EVALUATION OF ANTI-MICROBIAL POTENTIAL OF STRUCTURALLY MODIFIED DERIVATIVES OF LEAD COMPOUND BERBERINE ISOLATED FROM ROOTS OF BERBERIS ARISTATA

INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (09) ◽  
pp. 59-64
Author(s):  
Versha Parcha ◽  
Diveya J. Singh ◽  
Deepak Kumar ◽  
Jaswinder K. Saini ◽  

The alkaloid berberine, the chief constituent of Berberis aristata, has been reported to have antimicrobial activity associated with it. Structural changes can be made to this lead compound to try to improve its effi cacy in terms of antimicrobial activity. In the present study, attempts have been made to evaluate anti-microbial potential of structurally modifi ed derivatives of berberine. The derivatives so synthesized were characterized on the basis of spectral techniques like 1H,13C NMR, UV, IR and MASS and by comparison with standard berberine. Structure-activity relationship studies revealed that methoxyl group is pharmacophore of berberine and is thus needed to be retained in the skeleton. Further incorporation of the electron-withdrawing group has pronounced effect on the antimicrobial activity. Further attempts could be made to extend the series with the incorporation of such electron-withdrawing groups to get potent antimicrobial agents.

2019 ◽  
Vol 31 (12) ◽  
pp. 2740-2744
Author(s):  
Anil Verma ◽  
Vinod Kumar ◽  
Ramesh Kataria ◽  
Joginder Singh

Eleven acetohydrazide linked pyrazole derivatives were designed and synthesized via condensation of acetohyadrazide with different substituted formyl pyrazole derivatives under mild reaction conditions. Synthesized compounds were characterized on the basis of IR, NMR (1H & 13C) and mass spectrometry. The antimicrobial activities of all the compounds were screened against four bacterial and two fungal strains. Among the synthesized compounds, three compounds viz. 6b, 6c and 6d were found as efficient antimicrobial agents in reference to the standard drugs viz. ciprofloxacin and amphotericin-B. Further, structure-activity relationship (SAR) study revealed that electron-withdrawing group enhances the antimicrobial potential of synthesized derivatives as compared to other groups present in the ring. Hence, among compounds 6b-c, compound 6d could be explored further against other microbes to prove its vitality.


2019 ◽  
Vol 4 (3) ◽  
pp. 166-173
Author(s):  
Bhaurao P. Sathe ◽  
Harshal S. Oman ◽  
Naziya N.M.A. Rehman ◽  
Prashant P. Dixit ◽  
Arun S. Kharat ◽  
...  

In the present study, two series of tetrazole containing maleamic (5a-h) and phthaleamic acid (5i-l) derivatives were synthesized and evaluated for their antimicrobial and β-lactamase enzyme inhibition activities. The synthesized compounds were characterized by IR, 1H NMR and 13C NMR spectral techniques. Among the screened compounds, the compound 5c, 5d, 5e, 5f, 5g and 5h have shown good antimicrobial activity. We further performed exploratory β-lactamase enzyme inhibitors studies on β-lactamase.


2016 ◽  
Vol 11 (10) ◽  
pp. 1934578X1601101
Author(s):  
Shaojun Zheng ◽  
Longbo Li ◽  
Yu Wang ◽  
Rui Zhu ◽  
Hogjin Bai ◽  
...  

A series of 24 novel derivatives of the calycanthaceous alkaloids with a tetrahydropyrroloindol-based core structure was synthesized from tryptophan in good yields. Their structures were characterized by IR, 1H NMR, and 13C NMR spectroscopy and ESI-MS. The synthesized compounds were evaluated against a wide variety of plant pathogenic fungi. Compound a9 exhibited a high degree of activity against Curvularia lunata, with 91.0% activity at a concentration of 100 μg mL−1 and with an EC50 of 44.6 μg mL−1. a7, a8, a13, and a17 exhibited high degrees of activity against Sclerotinia sclerotiorum, with a8 being the most effective with an EC50 of 38.4 μg mL−1. Compound a9 illustrated activity against Botrytis cinerea, with an EC50 of 79.5 μg mL−1. Considering the compounds evaluated, the alkyl substituents of the chain may contribute to the significant variations in fungicidal potency. The structure antifungal activity relationships are also discussed. These results will pave the way for further design, structural modification, and development of calycanthaceous alkaloids as antimicrobial agents.


Antibiotics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 406
Author(s):  
John A. Karas ◽  
Labell J. M. Wong ◽  
Olivia K. A. Paulin ◽  
Amna C. Mazeh ◽  
Maytham H. Hussein ◽  
...  

A post-antibiotic world is fast becoming a reality, given the rapid emergence of pathogens that are resistant to current drugs. Therefore, there is an urgent need to discover new classes of potent antimicrobial agents with novel modes of action. Cannabis sativa is an herbaceous plant that has been used for millennia for medicinal and recreational purposes. Its bioactivity is largely due to a class of compounds known as cannabinoids. Recently, these natural products and their analogs have been screened for their antimicrobial properties, in the quest to discover new anti-infective agents. This paper seeks to review the research to date on cannabinoids in this context, including an analysis of structure–activity relationships. It is hoped that it will stimulate further interest in this important issue.


2021 ◽  
Vol 13 (1) ◽  
pp. 221-235
Author(s):  
M. M. Matin ◽  
S. A. Chowdhury ◽  
M. M. H. Bhuiyan ◽  
S. M. A. Kawsar ◽  
M. A. Alam

Dimolar pentanoylation of methyl α-D-glucopyranoside using direct method furnished the 2,6-di-O-pentanoate indicating regioselectivity at C-6 and C-2 positions. To develop glucopyranoside based potential antimicrobial agents, 2,6-di-O-pentanoate was further converted into eight newer 3,4-di-O-acyl esters reasonably in good yields. Both prediction of activity spectra for substances (PASS) and in vitro antimicrobial activity test established them as better antifungals than antibacterials. PASS predication also indicated that these sugar esters (SEs) are more potent as anticarcinogenic agents than as antioxidant agents. Structure activity relationship along with in silico ADMET studies clearly indicated that combination of pentanoyl (C5) and lauroyl (C12) in the glucopyranoside framework could be a potential antifungal agent especially against Macrophomina phaseolina.


INDIAN DRUGS ◽  
2012 ◽  
Vol 49 (03) ◽  
pp. 25-29
Author(s):  
S. G Jadhav ◽  
◽  
S. R. Pattan

A new series of substituted benzimidazole derivatives were synthesized and the structures of these compounds were established on the basis of spectral data. The title compounds were evaluated for antimicrobial activity. Some of these compounds have shown excellent antimicrobial activity.


Author(s):  
Manju Kumari ◽  
Rakesh Narang ◽  
Surendra Kumar Nayak ◽  
Sachin Kumar Singh ◽  
Vivek Gupta ◽  
...  

Objective: In recent years, an increasing frequency and severity of antimicrobial resistance to different antimicrobial agents, demands new remedies for the treatment of infections. Therefore, in this study, a series of undec-10-enehydrazide derivatives were synthesized and screened for in vitro activity against selected pathogenic microbial strains.Methods: The synthesis of the intermediate and target compounds was performed by standard procedure. Synthesized compounds were screened for antimicrobial activity by tube dilution method. Molecular docking study of synthesized derivatives was also performed to find out their interaction with the target site of β-ketoacyl-acyl carrier protein synthase III, (FabH; pdb id:3IL7) by docking technique. Quantitative structure–activity relationship (QSAR) studies were also performed to correlate antimicrobial activity with structural properties of synthesized molecules.Results: Antimicrobial screening results showed that compound 8 having benzylidine moiety with methoxy groups at meta and para position and compound 16 having 3-chloro-2-(3-flourophenyl)-4-oxoazetidine moiety was found to be most potent. QSAR studies revealed the importance of Randic topology parameter (R) in describing the antimicrobial activity of synthesized derivatives. Molecular docking study indicated hydrophobic interaction of deeply inserted aliphatic side chain of the ligand with FabH. The N-atoms of hydrazide moiety interacts with Ala246 and Asn247 through H-bonding. The m- and p-methoxy groups form H-bond with water and side chain of Arg36, respectively.Conclusion: Compound 8 having benzylidine moiety with methoxy groups at meta and para position and compound 16 having 3-chloro-2-(3- flourophenyl)-4-oxoazetidine moiety was found to most potent antibacterial and antifungal compounds, respectively.


2018 ◽  
Vol 15 (1) ◽  
pp. 21-30
Author(s):  
Deboleena Dhara ◽  
Dhanya Sunil ◽  
Pooja R. Kamath ◽  
K. Ananda ◽  
S. Shrilakshmi ◽  
...  

Introduction: The escalating threat due to dwindling effect of antibiotics and challenge of tackling rising drug-resistant infections has gathered high focus in current medicinal research. Methods: In an attempt to find new molecules that can defeat microbial resistance, two new series of 2-[2-substituted ethenyl]-5-(substituted methoxy)-1,3,4-oxadiazole derivatives were synthesized. Various aromatic hydrazides were allowed to undergo cyclization to substituted oxadiazole-2- amines in the presence of cyanogen bromide and further condensed with different heterocyclic aldehydes to give new oxadiazole derivatives. The synthesized molecules were fully characterized by various spectral techniques and tested for antimicrobial activity. Results: Almost all the newly synthesized compounds especially (5g-5l) displayed remarkable growth inhibition against three bacterial strains: M. smegmatis, S. aureus, E. coli and fungi C. albicans. The antimicrobial activity was further confirmed by MIC assay against the same microorganisms. Oxadiazole 5g displayed promising activity with a MIC value of 0.025 mM for two bacteria and fungi, whereas MIC of this compound for E. coli was 0.1 mM. Other active compounds (5h-5l) also exhibited good MIC ranging between 0.313 to 5.0 mM against the selected microorganisms. Docking simulations were generated to explore the potential binding approaches of ligand 5g at the D-alanine:d-alanine ligase (Ddl) protein of E. coli and S. aureus. Conclusion: Molecule 5g was active even at a lower concentration and could probably act as a prospective lead molecule for targeting the drug resistant microorganisms.


2021 ◽  
Vol 19 ◽  
Author(s):  
Sahaya Asirvatham ◽  
Jyoti Thakur ◽  
Savita Tauro ◽  
Bharat Dhokchawle

: With the current scenario of emerging drug-resistant microbial strains, there prevails a continuous threat to health and the development of new antimicrobial agents is a challenging task. Quantitative Structure Activity Relationship (QSAR) has proven to elevate the likelihood of finding a new pharmacophore. Intermolecular binding like hydrophobic bond, electrostatic and steric interactions helps to understand drug interaction with the receptors. Some common conclusions have been drawn after analyzing diverse case studies. Few descriptors were identified to be common in enhancing the antimicrobial activity. The structural features modifying the antimicrobial activity were analyzed using critically published results from significant QSAR studies on antimicrobial compounds. This commentary will assist the synthetic chemist to synthesize novel derivatives which could be potential antimicrobial compounds.


Sign in / Sign up

Export Citation Format

Share Document