scholarly journals Strategies for Increasing Biomass Energy Utilization in Rural Areas - Focusing on heating for greenhouse cultivation -

2015 ◽  
Vol 57 (6) ◽  
pp. 9-20 ◽  
Author(s):  
Seong Gu Hong
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Gbeminiyi M. Sobamowo ◽  
Sunday J. Ojolo

Nigeria has not been able to provide enough electric power to her about 200 million people. The last effort by the federal government to generate 6000 MW power by the end of 2009 failed. Even with the available less than 6000 MW of electricity generated in the country, only about 40% of the population have access to the electricity from the National Grid, out of which, urban centers have more than 80% accessibility while rural areas, which constitute about 70% of the total population, have less than 20% of accessibility to electricity. This paper addresses the possibility of meeting the energy demand in Nigeria through biomass gasification technology. The techno-economic analysis of biomass energy is demonstrated and the advantages of the biomass gasification technology are presented. Following the technical analysis, Nigeria is projected to have total potential of biomass of about 5.5 EJ in 2020 which has been forecast to increase to about 29.8 EJ by 2050. Based on a planned selling price of $0.727/kWh, the net present value of the project was found to be positive, the cost benefit ratio is greater than 1, and the payback period of the project is 10.14 years. These economic indicators established the economic viability of the project at the given cost. However, economic analysis shows a selling price of $0.727/kWh. Therefore, the capital investment cost, operation and maintenance cost, and fuel cost can be reduced through the development of the gasification system using local materials, purposeful and efficient plantation of biomass for the energy generation, giving out of financial incentives by the government to the investors, and locating the power plant very close to the source of feedstock generation.


2021 ◽  
Vol 39 (1) ◽  
pp. 269-274
Author(s):  
Minghao Liu ◽  
Zhaoyong Sun ◽  
Qian Li ◽  
Zheng Wei ◽  
Baorui Liang

Biomass energy is one of the most important renewable energy sources. Full utilization of this energy helps to optimize agricultural development, improve our living environment, and replace some non-renewable energy sources, thereby promoting the eco-environment across the country. However, biomass energy has not been extensively utilized in rural areas of China. Many farmers are not very enthusiastic about the use of biomass energy. Many scholars have tried to boost the willingness of farmers to utilize biomass energy. Therefore, this paper collects the relevant data from six aspects, namely, environmental factor, cost factor, income factor, behavior factor, policy factor, and personal factor, and constructs a binary logistic regression model. On this basis, the driving and influencing factors of biomass energy utilization were empirically analyzed from the perspective of farmers. The results show that the development of biomass energy is mainly affected by the farmers’ awareness of national energy strategy, the relevant costs of biomass utilization, and the attitude of family members and village committee. The research provides an important reference for further promotion of biomass energy, elevation of its utilization efficiency, and optimization of energy structure in rural China.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3398
Author(s):  
Mariusz Jerzy Stolarski ◽  
Paweł Dudziec ◽  
Michał Krzyżaniak ◽  
Ewelina Olba-Zięty

Conventional energy sources often do not fully satisfy the needs of a modern economy, especially given the climate changes associated with them. These issues should be addressed by diversification of energy generation, including the development of renewable energy sources (RES). Solid biomass will play a major part in the process in Poland. The function of rural areas, along with a well-developed agricultural and forest economy sector, will be a key aspect in this as these areas are suitable for solid biomass acquisition in various ways. This study aimed to determine the solid biomass energy potential in the commune of Goworowo to illustrate the potential in the smallest administrative units of Poland. This research determined the environmental and natural conditions in the commune, which helped to identify the crucial usable solid biomass resources. The total energy potential of solid biomass resources in the commune of Goworowo amounted to 97,672 GJ y−1. The highest potential was accumulated in straw surplus (37,288 GJ y−1) and the lowest was in wood from roadside maintenance (113 GJ y−1). This study showed that rural areas could soon play a significant role in obtaining solid biomass, and individual communes could become spaces for the diversification of energy feedstock.


2013 ◽  
Vol 779-780 ◽  
pp. 1388-1393
Author(s):  
Xing Long Xie

Energy consumption in the Chinese rural areas features massive use of low-grade energy commodities and the distempered structure of exorbitant leaning on biomass energy. This has provoked an increasingly exacerbating environment and exerted a depressing effect on agriculturally sustainable development. Pilot energy engineering practices of efficient utilization environment improvement have seen a surge on a vast extent of rural lands. As a typical engineering of energy resources for methane production, the four-dimension-inone-geometry model concerning ecological agriculture has triggered scholarly attention. The aim of this study is to deal with energy flows in this system whereby to put forward measures for its upgrading and ultimately offer policies for rural energy development and use. First, the study depicts the models structure and working process, and the methodology of estimating its energy flows. Next, taking a three member household as an example, the study estimates the quantity in its energy flows, finding that the whole system imports 1,195,102 MJ of energy and generates 35,728MJ, with 47.3% yielded by the breeding system, 32.1% by the anaerobic fermentation system, and 20.6% by the planting system. Comparatively, this model has neither achieved the artificially auxiliary energy-output ratio of 2.4:1, a criterion for high yield, nor reached the national high output standard of 38.1GJ/hm2 in inorganic energy investment and the height of 124.3 GJ/hm2 of farmland energy input in the bio-energy zones of good harvest. On this ground, this study presents countermeasures to further improve the models energy efficiency and strategies related to rural energy development. Those suggestions might apply to other rural areas.


2012 ◽  
Vol 512-515 ◽  
pp. 343-346
Author(s):  
Xiao Li Ma ◽  
I Shin Chang ◽  
Jing Wu

As the effective and efficient means of resources utilization, biomass energy has become a very valuable and reliable source of alternative energy in China, especially for remote areas and countryside. First, in order to facilitate the development of biogas applications and promote the economic, social and ecological benefits from comprehensive utilization of biogas in rural areas in Urumqi (Capital of Xinjiang Uygur Autonomous Region, XUAR), the biogas potential was estimated, the biogas engineering construction and biogas comprehensive utilization were evaluated, and the existing problems of biogas development were analyzed, in this study. Second, countermeasures and recommendations were proposed in trying to resolved existing problems, based on international practical experience. And, according to local climatic situation and regional characteristics in Urumqi, ecological agriculture was proposed in this study as the development mode for the rural areas in Urumqi, based on the development of biogas technologies and international practical experience.


Author(s):  
Yong Tian ◽  
Wen-Jing Liu ◽  
Qi-jie Jiang ◽  
Xin-Ying Xu

With the development of biomass power generation technology, biomass waste has a more excellent recycling value. The article establishes a biomass waste inventory model based on the material flow analysis method and predicts raw material waste’s energy utilization potential. The results show that the amount of biomass waste generated from 2016 to 2020 is on the rise. In 2020, biomass waste’s energy utilization can reach 107,802,300 tons, equivalent to 1,955.28PJ of energy. Through biomass energy analysis and emission analysis, the results show that the biomass waste can generate 182.02 billion kW⋅h in 2020, which can replace 35.9% of the region’s total power consumption, which is compared with the traditional power generation method under the same power generation capacity. Power generation can reduce SO2 emissions by 250,400 tons, NOx emissions by 399,300 tons, and PM10 emissions by 49,700 tons. Reduce direct economic losses by 712 million yuan. Therefore, Chinese promotion of the recycling of biomass waste and the acceleration of the biomass energy industry’s development is of great significance for reducing pollutant emissions and alleviating energy pressure.


Resources ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 41 ◽  
Author(s):  
Lyu Zhichen ◽  
Zhu Xuantong

Minimum volume of straw should be retained in collecting wheat straw in order to obtain sustainable agricultural biomass energy and measure the energy utilization potential of wheat straw when considering ecological balance. Based on relevant literature, this paper calculates the minimum, medium, and maximum volume of wheat straw retention in various types of soil and designs three different scenarios of minimum, medium, and maximum wheat straw retention. Taking Henan province in China as a case, this paper calculates the potential of wheat straw for energy utilization using linear regression method and scenario analysis, with consideration of influencing factors such as the harvest coefficient and combustion ratio of wheat straw. The results show that the energy utilization potential of wheat straw in Henan province in 2020, 2030, 2050 are 13.77, 16.48, 22.54 million tons of coal equivalent (TCEs), respectively, in the minimum retention scenario, assuming that wheat straw is not directly used for combustion. Excessive straw left in the field causes resource waste and produces CH4 and other greenhouse gases. This paper finds that energy potential of wheat straw for energy utilization is limited when ecological balance is considered, however, it is beneficial to the sustainable development of crop biomass energy.


Author(s):  
Shahin Shafiee ◽  
Mary Helen McCay

Airports, one of the important transportation components in this modern age, are under continuous improvement especially in regard to energy sustainability. While most work is concentrated on large airports, smaller airports which are mostly scattered around rural areas seem to be better opportunities for renewable energy utilization. However, while renewable energy has come into use at airports over the past decade, it has been at a slow pace and has not included storage. A reliable storage system can significantly increase the power reliability of a small airport and make a renewable energy system viable. Acquiring the technical requirements of a facility based on its characteristics enables the designer to evaluate the power source options and develop an efficient storage system. The current paper analytically develops a framework to design and integrate an energy storage method for a renewable system into a small airport facility. The framework details include methods for energy storage which are environmentally acceptable in combination with renewable energy sources to produce electrical power for the on-site facilities. The technical analysis which leads to the sizing of the storage unit initiates with categorizing different methods for energy storage and their applicability to an airport facility for off-grid and on-grid modes. Based on the results and conclusions from the first step, the search is narrowed down to mediums for electricity storage for a wind farm or solar power plant. In such a case, the main applications of the storage unit could be either to supply power to the facility during the transition time from the renewable source to the main grid or to regulate the power frequency of the generation unit. Capacitors and batteries were selected as the two options for the given power requirement of the facility. Considering the wide variety of available technologies and lower costs, the appropriate storage system is proposed for both long term and short term applications. A table is presented to compare available battery technologies and their respective storage capacities.


Sign in / Sign up

Export Citation Format

Share Document