scholarly journals Potential of Analog Meat from Rubber Seeds through Tissue Culture as a Solution for Unsaturated Fatty Acid Rich Meat: A Literature Review

2021 ◽  
Vol 1 (1) ◽  
pp. 12-15
Author(s):  
Nurpudji Astuti Taslim ◽  
Fahrul Nurkolis ◽  
Nelly Mayulu ◽  
Sutamara Lasurdi Noor ◽  
Piko Satria Augusta ◽  
...  

Non-communicable diseases (NCD) in Indonesia is a chronic disease caused by many factors, such as genetical, physiological, environmental, behavioral and lifestile. According to Basic Health Research survey (RISKESDAS) in 2013 and 2018, the prevalence of NCD showed increasing number within the last 5 years. The cause of this phenomena was proofed due half of Indonesians people had been consuming high fat or cholesterol or fried food, 1 – 6 timer per week. This mini narrative review study aims to exploring and discovering the potency of meat analog (in-vitro meat) and tissue culture of rubber seed as a solution for high unsaturated fat meat diet. Literature study related to NCD was found in National Library of Medicine (PubMed). We found that rubber seed contains 9 out of 10 essential amino acid and some unsaturated fatty acids in which when combined with tempeh made by pillar nut (Vina unguiculata) will potentially become an analog meat (in vitro meat) by tissue culture. This idea should be implemented with experimental study hence clinical potency of aforementioned meat analog will be well known.

2019 ◽  
Vol 3 (6) ◽  
pp. 753-758
Author(s):  
Silvia Woll

Innovators of in vitro meat (IVM) are convinced that this approach is the solution for problems related to current meat production and consumption, especially regarding animal welfare and environmental issues. However, the production conditions have yet to be fully clarified and there is still a lack of ethical discourses and critical debates on IVM. In consequence, discussion about the ethical justifiability and desirability of IVM remains hypothetical and we have to question those promises. This paper addresses the complex ethical aspects associated with IVM and the questions of whether, and under what conditions, the production of IVM represents an ethically justifiable solution for existing problems, especially in view of animal welfare, the environment, and society. There are particular hopes regarding the benefits that IVM could bring to animal welfare and the environment, but there are also strong doubts about their ethical benefits.


2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Jyothi R ◽  
Srinivasa Murthy K M ◽  
Hossein . ◽  
Veena .

Colocasia esculenta is commonly known as Taro, it is referred to as cocoyam in Nigeria. They are cherished for their rich taste, nutritional and medicinal properties. Every 100 g of taro corms possess 112 Kcal, 26.46 g carbohydrate, 1.50 g protein, 0.20 g total fat and 4.1g fiber (USDA National Nutrient Data Base). Besides its nutritional value, taro is used as a medical plant and provides bioactive compounds used as an anti-cancer drugs. Traditionally, cocoyams are vegetative propagated from tuber fragments, a practice that encourages pathogen distribution. Colocasia esculenta is a widely distributed food crop in the humid tropics and subtropics. Despite of its wide distribution, Taro plants are commonly infected with DsMV and other pathogens. This virus induces conspicuous mosaic, malformation, dwarfing or feathering on leaves in taro. As the results of infection, it reduces the quality and yield of taro production greatly. This virus is thus considered as a major limiting factor in the production of taro. Here plays the importance of  tissue culture plays a major role in producing the disease resistant plants round the year with high quality. For rapid multiplication and production of quality planting materials, tissue culture technology offers promising alternative compared to the traditional production methods. KEYWORDS: Colocasia esculenta, Virus, Pathogens, Conventional propagation, Micropropagation, Yield, Rapid multiplication, Quality


1959 ◽  
Vol XXXII (I) ◽  
pp. 41-53 ◽  
Author(s):  
Stig Kullander ◽  
Bengt Källén

ABSTRACT An in vitro study has been made of experimentally produced rat ovarian tumours of different age, paying particular attention to tumour reaction to crystallized steroids. Tumours of two histological structures were found: granulosa cell – luteoma tumours and arrhenoblastoma tumours. Both types grew in vitro and pictures of their cell appearance are given. The former type gave the best growth, and the endocrine studies were restricted to this type. The steroids tested (androsterone, oestrone, progesterone) all had an arresting effect in certain cases. This effect is not an unspecific, toxic one. The different tumours react to different extents, some being completely unaffected.


2020 ◽  
Vol 26 (39) ◽  
pp. 4970-4981
Author(s):  
Yu-Tang Tung ◽  
Chun-Hsu Pan ◽  
Yi-Wen Chien ◽  
Hui-Yu Huang

Metabolic syndrome is an aggregation of conditions and associated with an increased risk of developing diabetes, obesity and cardiovascular diseases (CVD). Edible mushrooms are widely consumed in many countries and are valuable components of the diet because of their attractive taste, aroma, and nutritional value. Medicinal mushrooms are higher fungi with additional nutraceutical attributes having low-fat content and a transisomer of unsaturated fatty acids along with high fiber content, biologically active compounds such as polysaccharides or polysaccharide β-glucans, alkaloids, steroids, polyphenols and terpenoids. In vitro experiments, animal models, and even human studies have demonstrated not only fresh edible mushroom but also mushroom extract that has great therapeutic applications in human health as they possess many properties such as antiobesity, cardioprotective and anti-diabetic effect. They are considered as the unmatched source of healthy foods and drugs. The focus of this report was to provide a concise and complete review of the novel medicinal properties of fresh or dry mushroom and extracts, fruiting body or mycelium and its extracts, fiber, polysaccharides, beta-glucan, triterpenes, fucoidan, ergothioneine from edible mushrooms that may help to prevent or treat metabolic syndrome and associated diseases.


2016 ◽  
Vol 128 (2) ◽  
pp. 437-446 ◽  
Author(s):  
Siham Esserti ◽  
Mohamed Faize ◽  
Lalla Aicha Rifai ◽  
Amal Smaili ◽  
Malika Belfaiza ◽  
...  

2020 ◽  
Vol 189 ◽  
pp. 110040 ◽  
Author(s):  
Patricia Azevedo ◽  
Nicole Pavan Butolo ◽  
Luciano Delmondes de Alencar ◽  
Hellen Maria Soares-Lima ◽  
Victor Ribeiro Sales ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 416-428 ◽  
Author(s):  
Raghad R. Alzahrani ◽  
Manal M. Alkhulaifi ◽  
Nouf M. Al-Enazi

AbstractThe adaptive nature of algae results in producing unique chemical components that are gaining attention due to their efficiency in many fields and abundance. In this study, we screened the phytochemicals from the brown alga Hydroclathrus clathratus and tested its ability to produce silver nanoparticles (AgNPs) extracellularly for the first time. Lastly, we investigated its biological activity against a variety of bacteria. The biosynthesized nanoparticles were characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and energy-dispersive spectroscopy. The biological efficacy of AgNPs was tested against eighteen different bacteria, including seven multidrug-resistant bacteria. Phytochemical screening of the alga revealed the presence of saturated and unsaturated fatty acids, sugars, carboxylic acid derivatives, triterpenoids, steroids, and other components. Formed AgNPs were stable and ranged in size between 7 and 83 nm and presented a variety of shapes. Acinetobacter baumannii, Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), and MDR A. baumannii were the most affected among the bacteria. The biofilm formation and development assay presented a noteworthy activity against MRSA, with an inhibition percentage of 99%. Acknowledging the future of nano-antibiotics encourages scientists to explore and enhance their potency, notably if they were obtained using green, rapid, and efficient methods.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Renata Orłowska

Abstract Background Somatic embryogenesis is a phenomenon carried out in an environment that generates abiotic stress. Thus, regenerants may differ from the source of explants at the morphological, genetic, and epigenetic levels. The DNA changes may be the outcome of induction media ingredients (i.e., copper and silver ions) and their concentrations and time of in vitro cultures. Results This study optimised the level of copper and silver ion concentration in culture media parallel with the induction medium longevity step towards obtaining barley regenerants via somatic embryogenesis with a minimum or maximum level of tissue culture-induced differences between the donor plant and its regenerants. The optimisation process is based on tissue culture-induced variation evaluated via the metAFLP approach for regenerants derived under varying in vitro tissue culture conditions and exploited by the Taguchi method. In the optimisation and verification experiments, various copper and silver ion concentrations and the different number of days differentiated the tested trials concerning the tissue culture-induced variation level, DNA demethylation, and de novo methylation, including symmetric (CG, CHG) and asymmetric (CHH) DNA sequence contexts. Verification of optimised conditions towards obtaining regenerants with minimum and maximum variability compared to donor plants proved useful. The main changes that discriminate optimised conditions belonged to DNA demethylation events with particular stress on CHG context. Conclusions The combination of tissue culture-induced variation evaluated for eight experimental trials and implementation of the Taguchi method allowed the optimisation of the in vitro tissue culture conditions towards the minimum and maximum differences between a source of tissue explants (donor plant) and its regenerants from somatic embryos. The tissue culture-induced variation characteristic is mostly affected by demethylation with preferences towards CHG sequence context.


2021 ◽  
pp. 110662
Author(s):  
Aldonza Jaques ◽  
Elizabeth Sánchez ◽  
Nicole Orellana ◽  
Javier Enrione ◽  
Cristian A. Acevedo
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document