scholarly journals The Benefits of Supplementary Fat in Feed Rations for Ruminants with Particular Focus on Reducing Levels of Methane Production

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
J. Rasmussen ◽  
A. Harrison

Methane (CH4), a highly potent greenhouse gas, has repeatedly been identified as a significant contributor to global warming. In this connection, ruminants, animals that produce large quantities of methane, have been singled out as an area for reduction with regard to their emissions to the atmosphere. In an analysis of recently published data, we identify the underlying mechanisms of methane production in ruminants and focus on the efficacy of different fat sources in terms of their ability to reduce methane production. Specific attention has been placed on in vivo studies involving cattle and sheep, as well as studies based on a large number of animals (>10), recorded over a longer period (>21 days), and employing reliable techniques for the quantification of methane production. Data clearly indicate that supplementary fat, given to ruminants inhibits methane production, with medium-chain fatty acids (laurin, myristic acid) as well as poly-unsaturated fatty acids (linoleic and especially linolenic acid) having a significant effect. It is also apparent that conflicting findings between individual published trials can largely be resolved when one takes into consideration differences in experimental design, the composition of the basic feeds, the fat sources used, and the number of animals involved.

2021 ◽  
Author(s):  
Yulianri Rizki Yanza ◽  
Malgorzata Szumacher-Strabel ◽  
Dorota Lechniak ◽  
Sylwester Ślusarczyk ◽  
Pawel Kolodziejski ◽  
...  

Abstract Background: This study aimed to investigate the effect of biologically active compounds (BAC) of Coleus amboinicus Lour. (CAL) herb fed to growing lambs on ruminal methane production, ruminal biohydrogenation of unsaturated fatty acids and meat characteristics. An in vitro trial (Experiment 1) comprising of control and three experimental diets (CAL constituting 10%, 15%, and 20% of the total diet) was conducted to determine an effective dose for in vivo experiments. After the in vitro trial, two in vivo experiments were conducted on six growing, rumen-cannulated lambs (Experiment 2) and 16 growing lambs (Experiment 3), which were assigned into the control (CON) and one experimental diet (20% of CAL). Several parameters were examined in vitro (pH, ammonia and VFA concentrations, protozoa, methanogens and select bacteria populations) and in vivo (methane production, digestibility, ruminal microorganism populations, meat quality, fatty acids profiles in rumen fluid and meat, transcript expression of 5 genes in meat). Results: The CAL lowered in vitro methane production by 51%. In the in vivo experiments, lambs fed CAL decreased methane production by 20% compared with the CON animals (Experiment 3), which corresponded to the reduced total methanogens counts in all experiments up to 28%, notably Methanobacteriales. In Experiment 3, CAL increased or tended to increase the numbers of Ruminococcus albus, Megasphaeraelsdenii, Butyrivibrioproteoclasticus, and Butyrivibriofibrisolvens. Dietary CAL suppressed the Holotricha population, but increased or tended to increase Entodiniomorpha population in Experiments 2 and 3. An increase in the polyunsaturated fatty acid (PUFA) proportion in the rumen of lambs was noted in response to the CAL diet, which was mainly attributable to the increase in C18:3 cis-9 cis-12 cis-15 (LNA) proportion. The CAL reduced the mRNA expressions of four investigated genes in meat (fatty acid synthase, stearoyl-CoA desaturase, lipoprotein lipase, and fatty acid desaturase 1). Conclusions:Summarizing, polyphenols of CAL (20% in diet) origin can mitigate ruminal methane production by inhibiting the methanogens communities. Supplementation of CAL also provides favorable conditions in the rumen by modulating ruminal bacteria involved in fermentation and biohydrogenation of fatty acids. CAL elevated the LNA concentration, which led to improved meat quality through increased deposition of n-3 PUFA.


1998 ◽  
Vol 329 (1) ◽  
pp. 89-94 ◽  
Author(s):  
C. Mary SUGDEN ◽  
G. D. Lee FRYER ◽  
A. Karen ORFALI ◽  
A. David PRIESTMAN ◽  
Elaine DONALD ◽  
...  

The administration of a low-carbohydrate/high-saturated-fat (LC/HF) diet for 28 days or starvation for 48 h both increased pyruvate dehydrogenase kinase (PDHK) activity in extracts of rat hepatic mitochondria, by approx. 2.1-fold and 3.5-fold respectively. ELISAs of extracts of hepatic mitochondria, conducted over a range of pyruvate dehydrogenase (PDH) activities, revealed that mitochondrial immunoreactive PDHKII (the major PDHK isoform in rat liver) was significantly increased by approx. 1.4-fold after 28 days of LC/HF feeding and by approx. 2-fold after 48 h of starvation. The effect of LC/HF feeding to increase hepatic PDHK activity was retained through hepatocyte preparation, but was decreased on 21 h culture with insulin (100μ-i.u./ml). A sustained (24 h) 2-4-fold elevation in plasma insulin concentration in vivo (achieved by insulin infusion via an osmotic pump) suppressed the effect of LC/HF feeding so that hepatic PDHK activities did not differ significantly from those of (insulin-infused) control rats. The increase in hepatic PDHK activity evoked by 28 days of LC/HF feeding was prevented and reversed (within 24 h) by the replacement of 7% of the dietary lipid with long-chain ω-3 fatty acids. Analysis of hepatic membrane lipid revealed a 1.9-fold increase in the ratio of total polyunsaturated ω-3 fatty acids to total mono-unsaturated fatty acids. The results indicate that the increased hepatic PDHK activities observed in livers of LC/HF-fed or 48 h-starved rats are associated with long-term actions to increase hepatic PDHKII concentrations. The long-term regulation of hepatic PDHK by LC/HF feeding might be achieved through an impaired action of insulin to suppress PDHK activity. In addition, the fatty acid composition of the diet, rather than the fat content, is a key influence.


Author(s):  
C.J. Newbold ◽  
A.R. Moss ◽  
G.S. Mollinson

Increasing concern over the role of greenhouse gases in global warming has lead to a renewed interest in the production of methane by ruminants. Sheep are routinely used to study digestibility, however their use as a model to study methane production by cattle has received only limited attention (Blaxter and Wainman, 1964). The objective of the current study was to establish whether differences in methane production exist between sheep and cattle and to measure the magnitude of these differences under various dietary situations.


2010 ◽  
Vol 192 (17) ◽  
pp. 4289-4299 ◽  
Author(s):  
Youjun Feng ◽  
John E. Cronan

ABSTRACT Escherichia coli fadH encodes a 2,4-dienoyl reductase that plays an auxiliary role in β-oxidation of certain unsaturated fatty acids. In the 2 decades since its discovery, FadH biochemistry has been studied extensively. However, the genetic regulation of FadH has been explored only partially. Here we report mapping of the fadH promoter and document its complex regulation by three independent regulators, the fatty acid degradation FadR repressor, the oxygen-responsive ArcA-ArcB two-component system, and the cyclic AMP receptor protein-cyclic AMP (CRP-cAMP) complex. Electrophoretic mobility shift assays demonstrated that FadR binds to the fadH promoter region and that this binding can be specifically reversed by long-chain acyl-coenzyme A (CoA) thioesters. In vivo data combining transcriptional lacZ fusion and real-time quantitative PCR (qPCR) analyses indicated that fadH is strongly repressed by FadR, in agreement with induction of fadH by long-chain fatty acids. Inactivation of arcA increased fadH transcription by >3-fold under anaerobic conditions. Moreover, fadH expression was increased 8- to 10-fold under anaerobic conditions upon deletion of both the fadR and the arcA gene, indicating that anaerobic expression is additively repressed by FadR and ArcA-ArcB. Unlike fadM, a newly reported member of the E. coli fad regulon that encodes another auxiliary β-oxidation enzyme, fadH was activated by the CRP-cAMP complex in a manner similar to those of the prototypical fad genes. In the absence of the CRP-cAMP complex, repression of fadH expression by both FadR and ArcA-ArcB was very weak, suggesting a possible interplay with other DNA binding proteins.


1955 ◽  
Vol 33 (1) ◽  
pp. 773-779 ◽  
Author(s):  
H. Bruce Collier ◽  
Sheila C. McRae

Hemolyzates of human erythrocytes catalyzed the oxidation of linoleate at pH 7 but not at pH 9. Hence the erythrocytes contained no lipoxidase and the catalytic action was probably due to hemoglobin. However, the time-activity curves for hemolyzates and for crystalline hemoglobin were not identical in shape. The oxidation of linoleate at pH 7 by plant lipoxidase was powerfully inhibited by phenothiazine and by phenylhydrazine. These compounds, and also α-tocopherol and α-naphthol, inhibited the catalytic activity of hemolyzates and of crystalline hemoglobin. It is probable that phenothiazine and phenylhydrazine act as antioxidants in these systems. Antioxidants in vivo may possibly play a role in protecting the unsaturated fatty acids of the erythrocyte membrane from oxidation catalyzed by hemoglobin.


Author(s):  
A.M. Municio ◽  
J.M. Odriozola ◽  
M.A. Pérez-Albarsanz ◽  
J.A. Ramos

1997 ◽  
Vol 77 (2) ◽  
pp. 287-292 ◽  
Author(s):  
Dirk Hoehler ◽  
Ronald R. Marquardt ◽  
Andrew A.F. Rohlich

The objective of this study was to determine whether lipid peroxidation is one mode of action in ochratoxin A (OA) toxicity in vivo. Lipid peroxidation was monitored by analyzing malondialdehyde (MDA) in different tissues by HPLC. A refinement study on the MDA assay was carried out, which showed the importance of the addition of an iron catalyst for the decomposition of hydroperoxides to yield a maximum amount of MDA from a given sample. The rat experiment was designed in a 2 × 2 factorial arrangement using 4 × 6 animals. The four different diets were fed for 21 d and contained either 1% corn oil and 9% tallow (Diets I and III) or 10% corn oil (Diets II and IV); in groups III and IV, 5 mg OA were added per kilogram of diet. For the chick experiment 4 × 8 Leghorn cockerels received diets for 14 d with no added sunflower oil (Diets I and III), whereas the diets of groups II and IV were supplemented with 2.5% sunflower oil. In groups III and IV, 2.5 mg OA were added per kilogram of diet. In both experiments OA decreased the performance of the animals significantly. In the rat experiment an increased lipid peroxidation due to a higher dietary level of unsaturated fatty acids could be obtained, when muscle samples were oxidatively stressed with Fe3+ and ascorbic acid. In the chick experiment there were very clear effects of the dietary treatment on the MDA concentrations of different tissues, as both a higher supply with unsaturated fatty acids and OA increased most of the MDA values significantly. These data suggest that lipid peroxides are formed in vivo by OA, but the effects may vary considerably from species to species, and may also be influenced by other factors. Key words: Ochratoxin A, lipid peroxidation, malondialdehyde, rat, chick


2018 ◽  
Vol 66 (8) ◽  
pp. 1751-1759 ◽  
Author(s):  
Ali S. Gomaa ◽  
Ahmed E. Kholif ◽  
Abdelkader M. Kholif ◽  
Reda Salama ◽  
Hamza A. El-Alamy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document