scholarly journals Nitrogen Fertilizer Rate and Cultivar Interaction Effects on Nitrogen Recovery, Utilization Efficiency, and Agronomic Performance of Spring Barley

ISRN Agronomy ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Yadeta Anbessa ◽  
Patricia Juskiw

A study was carried out at Lacombe, Alberta, to develop baseline information on nitrogen recovery, utilization efficiency, and agronomic performance of spring barley. This information may enable us to understand where the inefficiencies of N nutrition may lay and determine strategies to improve nitrogen use efficiency (NUE). Three divergent cultivars, “Manley” (two-rowed, tall, late maturing), “Noble” (six-rowed, mid-height, intermediate maturing), and “Tukwa” (six-rowed, semidwarf, early maturing), were grown under low (0 kg ha-1), moderate (50 kg ha-1) and high (100 kg ha-1) rates of applied N fertilization. Both N recovery and utilization efficiency decreased with the increase in rate of applied N fertilizer, and NUE declined from 45 kg kg-1N under the low N treatment to 33 kg kg-1N under the moderate treatment and 24 kg kg-1N under the high N treatment. The test cultivars were comparable in N uptake, but Tukwa and Noble were more efficient in their utilization of the N taken up than Manley, particularly under high N. Subsequently, while grain yield of Tukwa and Noble had increased linearly with rate of N fertilizer, the grain yield of Manley showed a declining trend under high N. This implies that, where a high input condition is targeted, improvement in N utilization efficiency may need to be given due consideration.

1982 ◽  
Vol 99 (2) ◽  
pp. 377-390 ◽  
Author(s):  
F. V. Widdowson ◽  
J. F. Jenkyn ◽  
A. Penny

SUMMARYExperiments with spring barley at Saxmundham, in each year from 1975 to 1978, compared two varieties (Julia v Wing), two amounts of granular N-fertilizer (50 v 100kg N/ha) and two times of applying it (seed bed v top-dressing), a liquid N-fertilizer spray (0 v 50 kg N/ha), mildew fungicides (with and without) and a rust fungicide (with and without), in factorial combination (26).Leaf diseases were assessed and grain weighed and analysed for % N each year. Thousand-grain weights were measured in 1977 and 1978.Yields were small in 1975 and 1976 because little rain fell in summer, but larger in 1977 and 1978, years with average rainfall.Mildew was most severe in 1975 and least in 1978, brown rust most severe in 1975 and 1978 and practically absent in 1976. Granular N-fertilizer was best applied to the seed bed in all years, whether or not leaf diseases were controlled. Late sprays of liquid N-fertilizer increased yield less than equivalent amounts of seed-bed N, but increased % N in grain more. However, because they also decreased grain size, less of the N applied as a liquid was recovered by grain than was recovered from granules given earlier. The mildew fungicides increased yields by ca. 0·25 t/ha in 1975 and 1977, but decreased them in 1976. They had little or no effect on % N in grain, but increased grain size in 1977. The rust fungicide, benodanil, increased grain yields each year and especially in 1978 (0·37 t/ha). It had no effect on grain % N, but consistently increased grain size and so enhanced grain yield and N uptake.


2003 ◽  
Vol 83 (5) ◽  
pp. 497-505 ◽  
Author(s):  
A. N’Dayegamiye ◽  
S. Huard ◽  
Y. Thibault

Mixed paper mill sludges are an important source of N for crop production. An estimate of direct and residual N recovery is necessary for their efficient management. A 3-yr field study (1997-1999) was conducted in central Quebec, Canada, to evaluate mixed paper mill sludges (PMS) effects on corn (Zea mays L.) yields and N nutrition, N recovery and N efficiency. The effects of PMS on soil NO3-N and total N levels were also determined. The study was situated on a silt loam Baudette soil (Humic Gleysol). The treatments included 3 PMS rates (30, 60 and 90 t ha-1 on wet basis) applied alone or in combination with N fertilizer (90 and 135 kg N ha-1, respectively, for 60 and 30 t ha-1). Treatments also included a control without PMS or N fertilizer, and a complete mineral N fertilizer (180 kg N ha-1) as recommended for corn. The previous plots were split beginning with the second year of the experiment, for annual and biennal PMS applications. Similar treatments as above were made on an adjacent site to evaluate N recovery under climatic conditions in 1999. In all years, PMS applied alone significantly increased corn yields by 1.5–5 t ha-1, compared to the unfertilized control. However, corn yields and N uptake were highest from the application of PMS in combination with N fertilizer. Biennial PMS applications at 60 to 90 ha-1 significantly increased corn yields and N uptake, which suggest high PMS residual effect; however, these increases were lower than those obtained with annual PMS applications. The N efficiency varied in 1997 from 13.0 to 15.4 kg grain kg N-1 for mineral N fertilizer and ranged from 3 to 13.7 kg grain kg N-1 for PMS, decreasing proportionally to increasing PMS rates. Apparent N recovery ranged from 1 3 to 19% in 1997 and from 10 to 14% in the residual year (1998), compared to 30 and 49%, respectively, for mineral N fertilizer. Depending on the PMS rate, N recovery varied from 13 to 21% in 1999. The results indicate high N supplying capacity and high r esidual N effects of PMS, which probably influenced corn yields and N nutrition. Annual PMS applications alone or combined with mineral N fertilizer had no significant effect on soil NO3-N and total N levels. This study demonstrates that application of low PMS rate (30 t ha-1) combined with mineral N fertilizer could achieve high agronomic, economic and environmental benefits on farms. Key words: Mixed paper mill sludges, corn yields, N uptake, N efficiency, residual effects, soil N


1996 ◽  
Vol 127 (3) ◽  
pp. 295-302 ◽  
Author(s):  
R. Carreres ◽  
R. González Tomé ◽  
J. Sendra ◽  
R. Ballesteros ◽  
E. Fernández Valiente ◽  
...  

SUMMARYThe effect of different rates (0–140 kg/ha) of nitrogen fertilizers on soil cyanobacteria and rice crop performance were studied in a rice-cropping system on an alkaline Fluvent soil at Valencia, Spain, during three consecutive crop seasons (1990–92). The results showed that the rice fields of Valencia favour the development of N2-fixing cyanobacteria. Nitrogen fixation varied during the cultivation cycle, reaching its highest values at the maximum tillering stage, 5–6 weeks after sowing, and showed a positive correlation with the abundance of cyanobacteria and a negative correlation with the amount of N fertilizers used. Grain yield increased with increasing amounts of N fertilizers up to 70 kg N/ha. N rates appeared to affect grain yield by causing variations in the number of panicles/m2. Leaf chlorophyll readings at the end of the tillering stage were positively correlated with the number of panicles/m2, suggesting that it could be a useful parameter for predicting productivity. There was a significant increase in the N uptake of the rice but a decrease in the apparent N recovery and Nuse efficiency of applied fertilizer N, with the application of increasing rates of N fertilizer. In all instances, except in plots fertilized with 140 kg N/ha, the amount of N removed by plants was significantly higher than that applied as N fertilizer. The differences were positively correlated with the values for N fixation, suggesting a significant contribution by N fixation to rice production. These results show that a rational use of biological N fixation, in combination with inorganic N fertilization, would permit the input of N fertilizers to be reduced by c. 50% without any significant loss of productivity and with an ecological benefit for the whole ecosystem.


2002 ◽  
Vol 139 (3) ◽  
pp. 245-256 ◽  
Author(s):  
A. J. A. VINTEN ◽  
B. C. BALL ◽  
M. F. O'SULLIVAN ◽  
J. K. HENSHALL ◽  
R. HOWARD ◽  
...  

A 3-year field experiment was conducted in 1996–98 near Penicuik, Scotland, to investigate the fate of N released after cultivation of previously long-term grass and grass-clover swards. The effects of timing of cultivations (autumn and spring), tillage methods (no tillage, ploughing to 200 mm and ploughing to 300 mm) and fertilizer N for spring (0, 40, 80 and 120 kg N/ha) and winter barley (0, 60, 120, 180 kg N/ha) on yield, N uptake and nitrate leaching were measured.In 1996, after spring cultivation, on plots previously in grass, spring barley grain yield and N uptake did not respond to N fertilizer, but on plots previously in grass-clover there was a nearly linear response to N. In 1997, the spring barley responded to N fertilizer at all levels. Yields of 1997 winter barley after grass did not show a response above 60 kg N/ha, but increased with fertilizer N up to at least 120 kg N/ha after grass-clover. In 1998, there were strong effects of N fertilizer and cultivation method on grain yield and N uptake of both spring barley and winter barley. Winter barley grain yield was significantly higher in plots previously in grass than in plots previously in grass-clover in 1998, though not in 1997. Winter barley yields were higher than spring barley at the same fertilizer N level.Throughout the 3 years, the no-tillage plots had consistently lower yields than the ploughed plots, but there was no consistent difference between the ploughed and deep ploughed treatments. There were strong interactive effects between tillage and previous sward in 1997. No-tillage under spring barley generally yielded lower than ploughing due to difficulties in weed control and the frequent anaerobic conditions in the soil.Annual leaching losses were relatively small (6·4–19·6 kg N/ha). In 1996–97, more N was leached from the plots left in stubble following spring barley than from those planted with winter barley after either spring barley or grass in 1996, but in 1997–98 more N was leached from plots in winter barley than from those in over-winter stubble. Nitrate leaching was least under no-tillage, though the effect was not significant.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


2011 ◽  
Vol 150 (5) ◽  
pp. 584-594 ◽  
Author(s):  
V. A. PAPPA ◽  
R. M. REES ◽  
R. L. WALKER ◽  
J. A. BADDELEY ◽  
C. A. WATSON

SUMMARYIntercropping systems that include legumes can provide symbiotically fixed nitrogen (N) and potentially increase yield through improved resource use efficiency. The aims of the present study were: (a) to evaluate the effects of different legumes (species and varieties) and barley on grain yield, dry matter production and N uptake of the intercrop treatments compared with the associated cereal sole crop; (b) to assess the effects on the yields of the next grain crop and (c) to determine the accumulation of N in shoots of the crops in a low-input rotation. An experiment was established near Edinburgh, UK, consisting of 12 hydrologically isolated plots. Treatments were a spring barley (Hordeum vulgare cvar Westminster) sole crop and intercrops of barley/white clover (Trifolium repens cvar Alice) and barley/pea (Pisum sativum cvar Zero4 or cvar Nitouche) in 2006. All the plots were sown with spring oats (Avena sativa cvar Firth) in 2007 and perennial ryegrass in 2008. No fertilizers, herbicides or pesticides were used at any stage of the experiment. Above-ground biomass (barley, clover, pea, oat and ryegrass) and grain yields (barley, pea and oat) were measured at key stages during the growing seasons of 2006, 2007 and 2008; land equivalent ratio (LER) was measured only in 2006. At harvest, the total above-ground biomass of barley intercropped with clover (4·56 t biomass/ha) and barley intercropped with pea cvar Zero4 (4·49 t biomass/ha) were significantly different from the barley sole crop (3·05 t biomass/ha; P<0·05). The grain yield of the barley (2006) intercropped with clover (3·36 t grain/ha) was significantly greater than that in the other treatments (P<0·01). The accumulation of N in barley was low in 2006, but significantly higher (P<0·05) in the oat grown the following year on the same plots. The present study demonstrates for the first time that intercrops can affect the grain yield and N uptake of the following crop (spring oats) in a rotation. Differences were also linked to the contrasting legume species and cultivars present in the previous year's intercrop. Legume choice is essential to optimize the plant productivity in intercropping designs. Cultivars chosen for intercropping purposes must take into account the effects upon the growth of the partner crop/s as well as to the following crop, including environmental factors.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yushi Zhang ◽  
Yubin Wang ◽  
Churong Liu ◽  
Delian Ye ◽  
Danyang Ren ◽  
...  

Increasing use of plant density or/and nitrogen (N) application has been introduced to maize production in the past few decades. However, excessive planting density or/and use of fertilizer may cause reduced N use efficiency (NUE) and increased lodging risks. Ethephon application improves maize lodging resistance and has been an essential measure in maize intensive production systems associated with high plant density and N input in China. Limited information is available about the effect of ethephon on maize N use and the response to plant density under different N rates in the field. A three-year field study was conducted with two ethephon applications (0 and 90 g ha−1), four N application rates (0, 75, 150, and 225 kg N ha−1), and two plant densities (6.75 plants m−2 and 7.5 plants m−2) to evaluate the effects of ethephon on maize NUE indices (N agronomic efficiency, NAE; N recovery efficiency, NRE; N uptake efficiency, NUpE; N utilization efficiency, NUtE; partial factor productivity of N, PFPN), biomass, N concentration, grain yield and N uptake, and translocation properties. The results suggest that the application of ethephon decreased the grain yield by 1.83–5.74% due to the decrease of grain numbers and grain weight during the three experimental seasons. Meanwhile, lower biomass, NO3- and NH4+ fluxes in xylem bleeding sap, and total N uptake were observed under ethephon treatments. These resulted in lower NAE and NUpE under the ethephon treatment at a corresponding N application rate and plant density. The ethephon treatment had no significant effects on the N concentration in grains, and it decreased the N concentration in stover at the harvesting stage, while increasing the plant N concentration at the silking stage. Consequently, post-silking N remobilization was significantly increased by 14.10–32.64% under the ethephon treatment during the experimental periods. Meanwhile, NUtE significantly increased by ethephon.


2019 ◽  
Vol 99 (3) ◽  
pp. 345-355
Author(s):  
Richard E. Engel ◽  
Carlos M. Romero ◽  
Patrick Carr ◽  
Jessica A. Torrion

Fertilizer NO3-N may represent a benefit over NH4-N containing sources in semiarid regions where rainfall is often not sufficient to leach fertilizer-N out of crop rooting zones, denitrification concerns are not great, and when NH3 volatilization concerns exist. The objective of our study was to contrast plant-N derived from fertilizer-15N (15Ndff), fertilizer-15N recovery (F15NR), total N uptake, grain yield, and protein of wheat (Triticum aestivum L.) from spring-applied NaNO3 relative to urea and urea augmented with urease inhibitor N-(n-butyl)thiophosphoric triamide (NBPT). We established six fertilizer-N field trials widespread within the state of Montana between 2012 and 2017. The trials incorporated different experimental designs and 15N-labeled fertilizer-N sources, including NaNO3, NH4NO3, urea, and urea + NBPT. Overall, F15NR and 15Ndff in mature crop biomass were significantly greater for NaNO3 than urea or urea + NBPT (P < 0.05). Crop 15Ndff averaged 53.8%, 43.9%, and 44.7% across locations for NaNO3, urea, and urea + NBPT, respectively. Likewise, crop F15NR averaged 52.2%, 35.8%, and 38.6% for NaNO3, urea, and urea + NBPT, respectively. Soil 15N recovered in the surface layer (0–15 cm) was lower for NaNO3 compared with urea and urea + NBPT. Wheat grain yield and protein were generally not sensitive to improvements in 15Ndff, F15NR, or total N uptake. Our study hypothesis that NaNO3 would result in similar or better performance than urea or urea + NBPT was confirmed. Use of NO3-N fertilizer might be an alternative strategy to mitigate fertilizer-N induced soil acidity in semiarid regions of the northern Great Plains.


1986 ◽  
Vol 107 (1) ◽  
pp. 61-66 ◽  
Author(s):  
M. D. Reddy ◽  
B. C. Ghosh ◽  
M. M. Panda

SUMMARYIn an intermediate deepwater (15–50 cm) situation, the number of tillers increased with increase of nitrogen fertilizer from 0 to 40 and 80 kg/ha and of seed rate from 100 to 200, 300 and 400 seeds/m2. The tiller mortality due to higher water depth was higher under no-N treatment and under higher seed rates. The number of panicles and grain yield increased significantly with increase in N. Similarly, an increase in the seed rate increased the number of panicles and decreased the number of grains per panicle and panicle weight. The grain yields of the different seed rates were similar. The interaction between N levels and seed rates was not significant.


Sign in / Sign up

Export Citation Format

Share Document