scholarly journals Development and Stability Studies of Novel Liposomal Vancomycin Formulations

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Krishna Muppidi ◽  
Andrew S. Pumerantz ◽  
Jeffrey Wang ◽  
Guru Betageri

A promising strategy to improve the therapeutic efficiency of antimicrobial agents is targeted therapy. Although vancomycin has been considered a gold standard for the therapy of MRSA pneumonia, clinical failure rates have also been reported owing to its slow, time-dependent bactericidal activity, variable lung tissue penetration and poor intracellular penetration into macrophages. Liposomal encapsulation has been established as an alternative for antimicrobial delivery to infected tissue macrophages and offers enhanced pharmacodynamics, pharmacokinetics and decreased toxicity compared to standard preparations. The aim of the present work is to prepare vancomycin in two different liposomal formulations, conventional and PEGylated liposomes using different methods. The prepared formulations were optimized for their particle size, encapsulation efficiency and physical stability. The dehydration-rehydration was found to be the best preparation method. Both the conventional and PEGylated liposomal formulations were successfully formulated with a narrow particle size and size distribution and % encapsulation efficiency of and , respectively. Both the formulations were stable at C for 3 months. These formulations were successfully used to evaluate for their intracellular killing of MRSA and in vivo pharmacokinetic and bio-distribution studies.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A750-A750
Author(s):  
Sojin Lee ◽  
Joon Young Park ◽  
Goo-Young Kim ◽  
Sang Woo Jo ◽  
Minhyuk Yun ◽  
...  

BackgroundSuccessful clinical translation of mRNA therapeutics requires an appropriate delivery strategy to overcome instability of mRNA and facilitate cellular uptake into the cells.1 Several lipid based nanoparticle approaches that encapsulate mRNA, notably lipid nanoparticle (LNP), have been developed, but their efficiency for delivery to certain target tissues and toxicity profiles still have room for improvement. The application of a novel polymer based nanoparticle technology platform, so called Stability Enhanced Nano Shells (SENS) for mRNA (mSENS) as a mRNA delivery platform for a cancer vaccine was demonstrated.MethodsThe physicochemical properties of mSENS formulation, particle size and encapsulation efficiency, were characterized using dynamic light scattering (DLS) and gel retardation assay. Using luciferase-encoding mRNA, the protein expression levels in vitro and in vivo were evaluated by luciferase assay or bioluminescence imaging (BLI), respectively. For cancer vaccine studies, antigen (tyrosinase-related protein 2 (Trp-2))-specific T cell responses were assessed by immunophenotyping mouse splenocytes using flow cytometry and by the enzyme-linked immunosorbent spot (ELISPOT) assay. The anti-tumor efficacy was studied in B16F10 lung tumor model in C57BL/6 mice. Liver and systemic toxicity of mSENS treated mice was evaluated through blood chemistry and complete blood count (CBC) tests.ResultsA library of mSENS formulations complexed with luciferase-encoding mRNA, were characterized for their particle size, surface charge, encapsulation efficiency, colloidal stability, and in vitro and in vivo luciferase protein expression level. Upon systemic administration in mice, varying biodistribution profiles were observed, implicating the potential for tailored delivery to target tissues. Particularly, cancer vaccine application was further developed leveraging the formulation with preferential spleen delivery. Following vaccination with Trp-2 mRNA encapsulated with mSENS (Trp-2 mRNA-mSENS) in B16F10 tumor bearing mice, strong Trp-2 antigen-specific IFN-γ T-cell responses were observed. Generated anti-tumor immunity also marked suppression of B16F10 lung tumors were observed in Trp-2-mSENS immunized mice compared to non-immunized controls, demonstrating the potential of mSENS as a mRNA delivery platform for the application for vaccine.ConclusionsProprietary biodegradable polymer based-mSENS platform offers an attractive delivery strategy for mRNA by tailoring to specific therapeutic applications. Depending on the application, whether it’s a vaccine or protein replacement, a rationally designed mSENS formulation can efficiently distribute mRNA to specific tissues. In particular, application of a splenic mSENS formulation for a cancer vaccine has been demonstrated in murine tumor model. In summary, mRNA delivery through mSENS platform is expected to provide significant opportunities in clinical development for mRNA therapeutics.Ethics ApprovalThe study was approved by Samyang Biopharmaceuticals’ IACUC (Institutional Animal Care and Use Committee), approval number SYAU-2027.ReferencePiotr S. Kowalski, Arnab Rudra, Lei Miao, and Daniel G. Anderson, delivering the messenger: advances in technologies for therapeutic mRNA delivery. Molecular Therapy Vol. 27 No 4 April 2019.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahitab Bayoumi ◽  
Mona G. Arafa ◽  
Maha Nasr ◽  
Omaima A. Sammour

AbstractSkin cancer is one of the most dangerous diseases, leading to massive losses and high death rates worldwide. Topical delivery of nutraceuticals is considered a suitable approach for efficient and safe treatment of skin cancer. Nobiletin; a flavone occurring in citrus fruits has been reported to inhibit proliferation of carcinogenesis since 1990s, is a promising candidate in this regard. Nobiletin was loaded in various vesicular systems to improve its cytotoxicity against skin cancer. Vesicles were prepared using the thin film hydration method, and characterized for particle size, zeta potential, entrapment efficiency, TEM, ex-vivo skin deposition and physical stability. Nobiletin-loaded composite penetration enhancer vesicles (PEVs) and composite transfersomes exhibited particle size 126.70 ± 11.80 nm, 110.10 ± 0.90 nm, zeta potential + 6.10 ± 0.40 mV, + 9.80 ± 2.60 mV, entrapment efficiency 93.50% ± 3.60, 95.60% ± 1.50 and total skin deposition 95.30% ± 3.40, 100.00% ± 2.80, respectively. These formulations were selected for cytotoxicity study on epidermoid carcinoma cell line (A431). Nobiletin-loaded composite PEVs displayed the lowest IC50 value, thus was selected for the in vivo study, where it restored skin condition in DMBA induced skin carcinogenesis mice, as delineated by histological and immuno-histochemical analysis, biochemical assessment of skin oxidative stress biomarkers, in addition to miRNA21 and miRNA29A. The outcomes confirmed that nobiletin- loaded composite PEVs is an efficient delivery system combating skin cancer.


2019 ◽  
Vol 9 (4-A) ◽  
pp. 425-437
Author(s):  
Khushboo Verma ◽  
Jhakeshwar Prasad ◽  
Suman Saha ◽  
Surabhi Sahu

The aim of this work was to develop and evaluate curcumin loaded liposome and its bio- enhancement. Curcumin was selected as a natural drug for liposome formulation. Curcumin show variety of biological activity but it also shows poor bioavailability due to low aqueous solubility (1 µg/ml), poor absorption and rapid metabolism so that piperine was selected as bio enhancer to improve curcumin bioavailability. Soy lecithin and cholesterol were used to prepared curcumin and curcumin-piperine loaded liposome at different ratio by thin film hydration method because of easy to perform, and high encapsulation rates of lipid. The all liposome formulations (F1-F5) were evaluated by mean particle size, polydispersity index, zeta potential, encapsulation efficiency and drug release. Bioavailability was also determined on rat. Blood samples were collected at specific intervals, and plasma was separated by ultracentrifugation. Plasma was analyzed by high-performance liquid chromatography at 425 nm taking acetonitrile: water (75:25 v/v) acidified with 2% acetic acid as a mobile phase at a flow rate of 0.5 ml/min using C18 column. The mean particle size was found in the range between 800-1100 that indicate liposome are large unilamellar vesical types. By zeta potential study its conform that the all formulation was stable. The encapsulation efficiency of all liposome formulation are varied between 59-67%. In vitro drug release was analyse in 7.4 pH phosphate buffer, the maximum %CDR observed at the 12 hrs., and formulation are follow sustained release thus they reduce metabolism, good absorption rate which improve bioavailability of drug. From in-vivo study, it is clear that curcumin-piperine liposomal formulation, increases Cmax, area under the curve, and mean residence time significantly as compared to pure curcumin and pure curcumin liposome. Keywords: liposome; Curcumin; Piperine, Thin film hydration method; Bioavailability


2013 ◽  
Vol 49 (4) ◽  
pp. 889-901 ◽  
Author(s):  
Trishna Bal ◽  
Shubhranshu Sengupta ◽  
Padala Narasimha Murthy

Inclusion complexes of carvedilol(CR) with hydroxyl propyl beta-cyclodextrin (HPBCD) was prepared using co-grinding technique. Then, the inclusion complex was microencapsulated using combinations of Eudragit NE30D (EU) and sodium alginate (SA) utilizing orifice gelation technique. The formulations were analysed by using Scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), Differential scanning Calorimetry (DSC) and X-ray diffractometer (XRD) and also evaluated for particle size, encapsulation efficiency, production yield, swelling capacity, mucoadhesive properties, zeta potential and drug release. The microcapsules were smooth and showed no visible cracks and extended drug release of 55.2006% up to 12 hours in phosphate buffer of pH 6.8, showing particle size within the range of 264.5-358.5 µm, and encapsulation efficiency of 99.337±0.0100-66.2753±0.0014%.The in vitro release data of optimized batch of microcapsules were plotted in various kinetic equations to understand the mechanisms and kinetics of drug release, which followed first order kinetics, value of "n" is calculated to be 0.459 and drug release was diffusion controlled. The mice were fed with diet for inducing high blood pressure and the in vivo antihypertensive activity of formulations was carried out administering the optimized formulations and pure drug separately by oral feeding and measured by B.P Monwin IITC Life Science instrument and the results indicated that the bioavailability of carvedilol was increased both in vitro and in vivo with the mucoadhesive polymers showing primary role in retarding the drug release.


Author(s):  
ASHWINI JADHAV ◽  
BINOY VARGHESE CHERIYAN

Objective: The main aim of this study to formulate a nifedipine-loaded nanocarrier for improving solubility and bioavailability. Methods: To improve the solubility of drug, nifedipine-loaded nanocarrier (lipotomes) were prepared by using the film lipid hydration technique. lipotomes were prepared by using tween 80, which is used for increasing solubility and cetyl alcohol for lipophilic environment. Drug excipients interaction determined by FTIR. lipotomes were characterized for particle size, Entrapment efficiency and zeta potential. lipotomes were optimized by using Design-Expert 12 software. Optimized formula further lyophilized by using different cyroproyectant to improve the stability and oral administration of the drug. Results: FTIR shows there was no interaction between formulation ingredients. Mean particle size, entrapment efficiency, zeta potential was determined and found to be 308.1 nm, 96.7%, 20.1mV, respectively. Surface morphology of lipotomes was observed by a scanning electron microscope (SEM). Optimized lipotomes was lyophilized with Mannitol (8% w/v) was the ideal cryoprotectant to retain the physicochemical characteristics of the OLT formulation after lyophilization. Conclusion: Nifedipine loaded nanocarrier was successfully prepared, using film hydration method. Which have good particle size, EE% and zeta potential. After lyophilization no significant changes was observed in particle size with good physical stability, so it could be a good choice for conventional drug delivery system by doing further investigation as in vitro and in vivo study


2020 ◽  
Vol 20 (9) ◽  
pp. 5813-5818
Author(s):  
Eun-Ji Heo ◽  
Sang Yeob Park ◽  
Hye-In Kim ◽  
Ji-Hun Sung ◽  
Hyeok Jin Kwon ◽  
...  

The purpose of this study is to identify the effects of a stabilizer and matrix former in the development of a celecoxib dried nanosuspension (DNS) for high dissolution rate and drug loading. Tween 80 and Hydroxypropyl Methylcellulose (HPMC) were used as stabilizers in the bead-milling process and dextrin was used as the matrix former in the spray-drying. Various nanosuspensions (NS) were prepared by varying the ratio of HPMC and dextrin, and the physicochemical properties of each formulation were evaluated for particle size, morphology, drug loading, crystallinity, redispersibility, physical stability and dissolution rate. HPMC efficiently stabilized the NS system and reduced the particle size of NS. The mean particle size of the NS with 0.5% HPMC (w/v) was the smallest (248 nm) of all formulations. Dextrin has been shown to inhibit the increase of particle size efficiently, which is known to occur frequently when NS is being solidified. As the dextrin increased in DNS, the dissolution rates of reconstituted NS were significantly improved. However, it was confirmed that more than the necessary amount of dextrin in DNS reduced the dissolution and drug loading. The dissolution of celecoxib in DNS prepared at the ratio (drug:dextrin, 1:2.5) was almost the highest. The dissolution of optimal formulation was 95.8% at 120 min, which was 2.0-fold higher than that of NS dried without dextrin. In conclusion, these results suggest that the formulation based on Tween 80, HPMC and dextrin may be an effective option for DNS to enhance its in vitro dissolution and in vivo oral absorption.


2009 ◽  
Vol 59 (2) ◽  
pp. 133-144 ◽  
Author(s):  
Fatemeh Atyabi ◽  
Anahita Farkhondehfai ◽  
Farnaz Esmaeili ◽  
Rassoul Dinarvand

Preparation of pegylated nano-liposomal formulation containing SN-38:In vitrocharacterization andin vivobiodistribution in mice7-Ethyl-10-hydroxy-camptothecin (SN-38), a metabolite of irinotecan x HCl, is poorly soluble in aqueous solutions and practically insoluble in most physiologically compatible and pharmaceutically acceptable solvents. Formulation of SN-38 in concentrated pharmaceutical delivery systems for parenteral administration is thus very difficult. Due to their biocompatibility and low toxicity, liposomes were considered for the delivery of SN-38. In this study, pegylated liposomes with distearoylphosphatidylcholine, distearoylphosphatidylethanolamine containing SN-38 were prepared and their characteristics, such as particle size, encapsulation efficiency,in vitrodrug release and biodistribution, were investigated. The particle size of liposomes was in the range of 150--200 nm. The encapsulation efficiency andin vitrorelease rate of pegylated liposomes was higher than those of non-pegylated liposomes. As expected, the distribution of pegylated liposomes in body organs such as liver, kidney, spleen and lung was considerably lower than that of non-pegylated liposomes. Also, their blood concentration was at least 50 % higher than that of non-pegylated liposomes.


2021 ◽  
Author(s):  
Vishal Gurumukhi ◽  
Sanjaykumar Bari

Abstract The objective of the present work was to optimize ritonavir (RTV) loaded nanostructured lipid carriers (NLCs) to improve bioavailability using quality by design (QbD) based technique. Risk assessment was studied using ‘cause and effect’ diagram followed by failure mode effect analysis (FMEA) to identify the effective high-risk variables for the formulation development. Quality target product profile (QTPP) and critical quality attributes (CQAs) were initially assigned for the proposed product. Central composite rotatable design (CCRD) was used to identify the individual and combined interactions of formulation variables. RTV loaded NLC (RTV-NLC) was prepared using emulsification-ultrasonication method. The effect of formulation variables like ultrasound amplitude, lipid concentration, surfactant concentration on their responses like particle size, polydispersity index (PDI), and entrapment efficiency (EE) were studied by CCRD. The optimized formulation was subjected to lyophilization to obtain dry NLCs for solid-state analysis. DSC and PXRD investigations showed RTV was molecularly dispersed in lipid matrix indicating amorphous form present in the formulation. FESEM and AFM depicted the spherical and uniform particles. The enhanced solubility and dissolution may be attributed due to the reduced particle size. The optimized NLCs showed good physical stability during storage for six months. RTV-NLC was further subjected to in vitro studies and found a successful sustained release rate of 92.37±1.03 %. The parallel artificial membrane permeability assay (PAMPA) and everted gut sac model have demonstrated the permeation enhancement of RTV. In vivo study observed the enhanced bioavailability with 2.86 fold suggesting optimized NLC successfully overcome the issue of solubility.


2020 ◽  
Vol 12 (SP1) ◽  
pp. 41-49
Author(s):  
Mahsa Nikkhah ◽  
Zhaleh Khoshkhoo ◽  
Seyed Ebrahim Hosseini ◽  
Peyman Mahasti Shotorbani ◽  
Afshin Akhondzadeh Basti

Bene oil (pistacia atlantica), as a plant source, is rich in phenolic and tocopherol compounds and has significant antioxidant, therapeutic and antimicrobial effects. Encapsulation of hydrophobic compounds in liposome system is an ideal solution for protecting them against destruction during storage. An important advantage of liposomes is the encapsulation of hydrophilic, hydrophobic and amphiphilic compounds by using natural phospholipids, such as lecithin, with beneficial effects. The aim of this study is to encapsulate the bene kernel oil in the form of microliposomes. For this purpose, the effect of composition of liposomes based on lecithin and cholesterol was studied using the Mozafari method. Liposomes are prepared using lecithin and cholesterol in the ratios of 60:0, 50:10, 40:20 and 30:30. Particle size, size distribution, zeta potential and encapsulation efficiency were charac-terised. According to the result, the size of liposomes was dependent on their composition, but the wasaffected significantly affected by adding cholesterol (P < 0.05). Average diameter of the particles was between 4 and 9 µm. Liposome with a ratio of 40:20 had the smallest size. By applying cholesterol, zeta potential increased from 16.4 mV to 32.39 mV, which indicates electrostatic stability of liposomes. In general, with encapsulation efficiency of 84.33%, the ratio of 40:20 is considered as an ideal concentration in the formulation of microliposomes. Based on the results, bene oil-loaded liposomes with a lecithin:cholesterol formulation ratio of :as 40:20 was chosen as an optimal formulation because of its smaller particle size, higher zeta potential and suitable stability, which can be used in trapping, delivering and releasing hydrophilic, adipose-friendly and amphiphilic compounds (dual-friendly).


2021 ◽  
Author(s):  
Monica Argenziano ◽  
Sergio Occhipinti ◽  
Anna Scomparin ◽  
Costanza Angelini ◽  
Francesco Novelli ◽  
...  

Abstract Immunotherapy is a valuable approach for the treatment of cancer. Nanotechnology-based delivery systems emerged as a powerful tool for improving immunotherapeutics. Therefore, their association have been proposed to overcome some biopharmaceutical limitations of immunotherapy. This work aims at designing a novel immunotherapeutic nanoplatform for the treatment of HER2+ breast cancer. Here, purposely-tailored chitosan-shelled nanobubbles (NBs) were developed for the loading of DNA vaccine. The NBs were then functionalized with anti-CD1a antibody to target dendritic cells (DCs). The NB formulations showed sizes of about 300 nm and a good physical stability up to 6 months stored at 4 °C. The in vitro characterization confirmed that these NBs were able to load DNA with a good encapsulation efficiency (82%). The antiCD1a-functionalized NBs targeted to DCs demonstrated the capability to induce activation of DCs both in human and mouse models, and elicit a specific immune response able to delay tumor growth in vivo in mice. The results are the proof of concept that DC-targeted chitosan nanobubbles loaded with tumor vaccine may provide an attractive nanotechnology approach for the future immunotherapeutic treatment of cancer.


Sign in / Sign up

Export Citation Format

Share Document