scholarly journals Physical stability of microliposomes in bene (Pistacia atlantica) oil with different formulations

2020 ◽  
Vol 12 (SP1) ◽  
pp. 41-49
Author(s):  
Mahsa Nikkhah ◽  
Zhaleh Khoshkhoo ◽  
Seyed Ebrahim Hosseini ◽  
Peyman Mahasti Shotorbani ◽  
Afshin Akhondzadeh Basti

Bene oil (pistacia atlantica), as a plant source, is rich in phenolic and tocopherol compounds and has significant antioxidant, therapeutic and antimicrobial effects. Encapsulation of hydrophobic compounds in liposome system is an ideal solution for protecting them against destruction during storage. An important advantage of liposomes is the encapsulation of hydrophilic, hydrophobic and amphiphilic compounds by using natural phospholipids, such as lecithin, with beneficial effects. The aim of this study is to encapsulate the bene kernel oil in the form of microliposomes. For this purpose, the effect of composition of liposomes based on lecithin and cholesterol was studied using the Mozafari method. Liposomes are prepared using lecithin and cholesterol in the ratios of 60:0, 50:10, 40:20 and 30:30. Particle size, size distribution, zeta potential and encapsulation efficiency were charac-terised. According to the result, the size of liposomes was dependent on their composition, but the wasaffected significantly affected by adding cholesterol (P < 0.05). Average diameter of the particles was between 4 and 9 µm. Liposome with a ratio of 40:20 had the smallest size. By applying cholesterol, zeta potential increased from 16.4 mV to 32.39 mV, which indicates electrostatic stability of liposomes. In general, with encapsulation efficiency of 84.33%, the ratio of 40:20 is considered as an ideal concentration in the formulation of microliposomes. Based on the results, bene oil-loaded liposomes with a lecithin:cholesterol formulation ratio of :as 40:20 was chosen as an optimal formulation because of its smaller particle size, higher zeta potential and suitable stability, which can be used in trapping, delivering and releasing hydrophilic, adipose-friendly and amphiphilic compounds (dual-friendly).

2020 ◽  
Vol 26 (14) ◽  
pp. 1543-1555 ◽  
Author(s):  
Meltem E. Durgun ◽  
Emine Kahraman ◽  
Sevgi Güngör ◽  
Yıldız Özsoy

Background: Topical therapy is preferred for the management of ocular fungal infections due to its superiorities which include overcoming potential systemic side effects risk of drugs, and targeting of drugs to the site of disease. However, the optimization of effective ocular formulations has always been a major challenge due to restrictions of ocular barriers and physiological conditions. Posaconazole, an antifungal and highly lipophilic agent with broad-spectrum, has been used topically as off-label in the treatment of ocular fungal infections due to its highly lipophilic character. Micellar carriers have the potential to improve the solubility of lipophilic drugs and, overcome ocular barriers. Objective: In the current study, it was aimed optimization of posaconazole loaded micellar formulations to improve aqueous solubility of posaconazole and to characterize the formulations and to investigate the physical stability of these formulations at room temperature (25°C, 60% RH), and accelerated stability (40°C, 75% RH) conditions. Method: Micelles were prepared using a thin-film hydration method. Pre-formulation studies were firstly performed to optimize polymer/surfactant type and to determine their concentration in the formulations. Then, particle size, size distribution, and zeta potential of the micellar formulations were measured by ZetaSizer Nano-ZS. The drug encapsulation efficiency of the micelles was quantified by HPLC. The morphology of the micelles was depicted by AFM. The stability of optimized micelles was evaluated in terms of particle size, size distribution, zeta potential, drug amount and pH for 180 days. In vitro release studies were performed using Franz diffusion cells. Results: Pre-formulation studies indicated that single D-ɑ-tocopheryl polyethylene glycol succinate (TPGS), a combination of it and Pluronic F127/Pluronic F68 are capable of formation of posaconazole loaded micelles at specific concentrations. Optimized micelles with high encapsulation efficiency were less than 20 nm, approximately neutral, stable, and in aspherical shape. Additionally, in vitro release data showed that the release of posaconazole from the micelles was higher than that of suspension. Conclusion: The results revealed that the optimized micellar formulation of posaconazole offers a potential approach for topical ocular administration.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Krishna Muppidi ◽  
Andrew S. Pumerantz ◽  
Jeffrey Wang ◽  
Guru Betageri

A promising strategy to improve the therapeutic efficiency of antimicrobial agents is targeted therapy. Although vancomycin has been considered a gold standard for the therapy of MRSA pneumonia, clinical failure rates have also been reported owing to its slow, time-dependent bactericidal activity, variable lung tissue penetration and poor intracellular penetration into macrophages. Liposomal encapsulation has been established as an alternative for antimicrobial delivery to infected tissue macrophages and offers enhanced pharmacodynamics, pharmacokinetics and decreased toxicity compared to standard preparations. The aim of the present work is to prepare vancomycin in two different liposomal formulations, conventional and PEGylated liposomes using different methods. The prepared formulations were optimized for their particle size, encapsulation efficiency and physical stability. The dehydration-rehydration was found to be the best preparation method. Both the conventional and PEGylated liposomal formulations were successfully formulated with a narrow particle size and size distribution and % encapsulation efficiency of and , respectively. Both the formulations were stable at C for 3 months. These formulations were successfully used to evaluate for their intracellular killing of MRSA and in vivo pharmacokinetic and bio-distribution studies.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Waisudin Badri ◽  
Karim Miladi ◽  
Rkia Eddabra ◽  
Hatem Fessi ◽  
Abdelhamid Elaissari

The objective of this work is the preparation of nanocapsules which are intended for the treatment of rheumatoid arthritis (RA). We use Argan oil as vehicle of hydrophobic drugs such as indomethacin. Nanoprecipitation technique was used like a method for preparation of nanocapsules, where polycaprolactone, acetone, and Argan oil are used as polymer, solvent, and carrier, respectively. Primarily, investigation of Argan oil amount addition was performed; then systematic study to optimize the formulation was done. Nanocapsules containing indomethacin (loaded nanocapsules) and others without indomethacin (blank nanocapsules) were characterized by studying particles size, zeta potential, and encapsulation efficiency. It is shown that particle size ranged between 290 nm and 350 nm. The zeta potential values were negative (from −40 up to −50 mV) while encapsulation efficiency ranged between 65 and 75%.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 120
Author(s):  
Zahra Siyar ◽  
Ali Motamedzadegan ◽  
Jafar Mohammadzadeh Milani ◽  
Ali Rashidinejad

In this study, the encapsulation of saffron extract (SE) was examined at four various concentrations of soy lecithin (0.5%–4% w/v) and constant concentration of SE (0.25% w/v). Particle size and zeta potential of liposomes were in the range of 155.9–208.1 nm and −34.6–43.4 mV, respectively. Encapsulation efficiency was in the range of 50.73%–67.02%, with the stability of nanoliposomes in all treatments being >90%. Encapsulated SE (2% lecithin) was added to ricotta cheese at different concentrations (0%, 0.125%, 1%, and 2% w/v), and physicochemical and textural properties of the cheese were examined. Lecithin concentration significantly (p ≤ 0.05) affected the particle size, zeta potential, stability, and encapsulation efficiency of the manufactured liposomes. In terms of chemical composition and color of the functional cheese, the highest difference was observed between the control cheese and the cheese enriched with 2% liposomal encapsulated SE. Hardness and chewiness increased significantly (p ≤ 0.05) in the cheeses containing encapsulated SE compared to the control cheese. However, there was no significant difference in the case of adhesiveness, cohesiveness, and gumminess among different cheeses. Overall, based on the findings of this research, liposomal encapsulation was an efficient method for the delivery of SE in ricotta cheese as a novel functional food.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahitab Bayoumi ◽  
Mona G. Arafa ◽  
Maha Nasr ◽  
Omaima A. Sammour

AbstractSkin cancer is one of the most dangerous diseases, leading to massive losses and high death rates worldwide. Topical delivery of nutraceuticals is considered a suitable approach for efficient and safe treatment of skin cancer. Nobiletin; a flavone occurring in citrus fruits has been reported to inhibit proliferation of carcinogenesis since 1990s, is a promising candidate in this regard. Nobiletin was loaded in various vesicular systems to improve its cytotoxicity against skin cancer. Vesicles were prepared using the thin film hydration method, and characterized for particle size, zeta potential, entrapment efficiency, TEM, ex-vivo skin deposition and physical stability. Nobiletin-loaded composite penetration enhancer vesicles (PEVs) and composite transfersomes exhibited particle size 126.70 ± 11.80 nm, 110.10 ± 0.90 nm, zeta potential + 6.10 ± 0.40 mV, + 9.80 ± 2.60 mV, entrapment efficiency 93.50% ± 3.60, 95.60% ± 1.50 and total skin deposition 95.30% ± 3.40, 100.00% ± 2.80, respectively. These formulations were selected for cytotoxicity study on epidermoid carcinoma cell line (A431). Nobiletin-loaded composite PEVs displayed the lowest IC50 value, thus was selected for the in vivo study, where it restored skin condition in DMBA induced skin carcinogenesis mice, as delineated by histological and immuno-histochemical analysis, biochemical assessment of skin oxidative stress biomarkers, in addition to miRNA21 and miRNA29A. The outcomes confirmed that nobiletin- loaded composite PEVs is an efficient delivery system combating skin cancer.


2019 ◽  
Vol 7 (3) ◽  
pp. 59-66 ◽  
Author(s):  
Krishna Kushwaha ◽  
Manoj Kumar Mishra ◽  
Rajat Srivastava

Objective: The objective of present work was to utilize the potential of nanostructured lipid carriers (NLCs) form improvement in bioavailability of Sertraline as antidepressant drug formulated by emulsification- solvent evaporation technique with some modification. NLC is the blend of solid lipid, liquid lipid and surfactant for encapsulation of poor water soluble actives. Design: A full 32 factorial design was utilized to study the effect of two independent parameters namely solid lipid to liquid lipid concentration and stabilizer concentration on the entrapment efficiency of the prepared NLCs. The sertraline NLC formulation was characterized with respect to particle size, polydispersity index (PDI), zeta-potential, encapsulation efficiency and physical morphology. Result: The NLC formulation had an average diameter of 96.59 nm, PDI of 0.192, zeta-potential of -39.88 mV, and encapsulation efficiency of 97%, respectively. Conclusion: The NLC formulation for sertraline encapsulation has been successfully developed and is suitable for nose to brain delivery system due to their nano-size and sta


2019 ◽  
Vol 9 (4-A) ◽  
pp. 425-437
Author(s):  
Khushboo Verma ◽  
Jhakeshwar Prasad ◽  
Suman Saha ◽  
Surabhi Sahu

The aim of this work was to develop and evaluate curcumin loaded liposome and its bio- enhancement. Curcumin was selected as a natural drug for liposome formulation. Curcumin show variety of biological activity but it also shows poor bioavailability due to low aqueous solubility (1 µg/ml), poor absorption and rapid metabolism so that piperine was selected as bio enhancer to improve curcumin bioavailability. Soy lecithin and cholesterol were used to prepared curcumin and curcumin-piperine loaded liposome at different ratio by thin film hydration method because of easy to perform, and high encapsulation rates of lipid. The all liposome formulations (F1-F5) were evaluated by mean particle size, polydispersity index, zeta potential, encapsulation efficiency and drug release. Bioavailability was also determined on rat. Blood samples were collected at specific intervals, and plasma was separated by ultracentrifugation. Plasma was analyzed by high-performance liquid chromatography at 425 nm taking acetonitrile: water (75:25 v/v) acidified with 2% acetic acid as a mobile phase at a flow rate of 0.5 ml/min using C18 column. The mean particle size was found in the range between 800-1100 that indicate liposome are large unilamellar vesical types. By zeta potential study its conform that the all formulation was stable. The encapsulation efficiency of all liposome formulation are varied between 59-67%. In vitro drug release was analyse in 7.4 pH phosphate buffer, the maximum %CDR observed at the 12 hrs., and formulation are follow sustained release thus they reduce metabolism, good absorption rate which improve bioavailability of drug. From in-vivo study, it is clear that curcumin-piperine liposomal formulation, increases Cmax, area under the curve, and mean residence time significantly as compared to pure curcumin and pure curcumin liposome. Keywords: liposome; Curcumin; Piperine, Thin film hydration method; Bioavailability


2019 ◽  
Vol 16 (02) ◽  
pp. 40
Author(s):  
Malinda Prihantini ◽  
Elya Zulfa ◽  
Listyana Dewi Prastiwi ◽  
Ikha Dyah Yulianti

ABSTRACT The nanoparticle system encapsulates and protects flavonoids of suji leaves from photolysis and oxidation instability. Chitosan is a biocompatible, biodegradable and non-toxic nanoparticles forming polymer. Ultrasonication is a materials mixing technique under high vibration energy. The ultrasonication time affects the particle size. The aim of this study was to determine the effect of the ultrasonication time on physical characteristics of chitosan nanoparticles of suji (Pleomele angustifolia) leaf ethanol extract and its physical stability after cycling test. Ethanol extract of suji leaves (EEDS) was obtained by maceration using 70% ethanol. Chitosan EEDS nanoparticles were made under ionic gelation method using an ultrasonication time of 3 minutes (FI), 6 minutes (FII), and 9 minutes (FIII). The physical characterization of nanoparticles includes particle size, polydispersity index, and zeta potential. Chitosan EEDS nanoparticles with the best physical characteristics (FIII) were tested for stability using cycling test method. The data obtained were analyzed using the Anova statistical method with a 95% confidence level. The size of EEDS chitosan nanoparticles (nm) was significantly different in all formulas, FI (374.47), FII (288.43), and FIII (233.37). The polydispersity index of FI (0.38) and FIII (0.65) were significantly different, while FII (0.41) was not significantly different. The zeta potential (mV) FI (51.70), FII (46.10), and FIII (48.60) were not significantly different in all formulas. The physical characteristics of Formula III after Cycling Test showed a particle size of 455.0 nm, a polydispersity index of 0.174, and a zeta potential of 20.1 mV. Keywords: ultrasonication, nanoparticles, chitosan, cycling test, suji leaf (Pleomele angustifolia)


2013 ◽  
Vol 804 ◽  
pp. 85-88
Author(s):  
Qian Chen ◽  
Hong Kang ◽  
Yang Zhang ◽  
Hao Wu ◽  
Chun Xiao Dai ◽  
...  

Purpose:in this study, the conditions of the preparation of NDV-N-2-HACC/CMC microspheres are optimized. Methods:Using entrapment efficiency, particle size, Zeta potential as the evaluating indicators, 3 main factors to influence the preparation for microspheres were optimized by orthogonal factorization method. Result:The optimal conditions were 1.0 mg/ml HACC, 1.2 mg/ml CMC, 1:3 (v/v) NDV/HACC, and 1200 r/min and 30 min for stirring. The range of particle size was 192.1-595.2 nm, and average size was 304.3 nm. Zeta potential was +32.50 mV; encapsulation efficiency (EE) was (98.96±2.1) %.Conclusion:the conditions of the preparation of NDV-N-2-HACC/CMC microspheres are optimized.


Author(s):  
ASHWINI JADHAV ◽  
BINOY VARGHESE CHERIYAN

Objective: The main aim of this study to formulate a nifedipine-loaded nanocarrier for improving solubility and bioavailability. Methods: To improve the solubility of drug, nifedipine-loaded nanocarrier (lipotomes) were prepared by using the film lipid hydration technique. lipotomes were prepared by using tween 80, which is used for increasing solubility and cetyl alcohol for lipophilic environment. Drug excipients interaction determined by FTIR. lipotomes were characterized for particle size, Entrapment efficiency and zeta potential. lipotomes were optimized by using Design-Expert 12 software. Optimized formula further lyophilized by using different cyroproyectant to improve the stability and oral administration of the drug. Results: FTIR shows there was no interaction between formulation ingredients. Mean particle size, entrapment efficiency, zeta potential was determined and found to be 308.1 nm, 96.7%, 20.1mV, respectively. Surface morphology of lipotomes was observed by a scanning electron microscope (SEM). Optimized lipotomes was lyophilized with Mannitol (8% w/v) was the ideal cryoprotectant to retain the physicochemical characteristics of the OLT formulation after lyophilization. Conclusion: Nifedipine loaded nanocarrier was successfully prepared, using film hydration method. Which have good particle size, EE% and zeta potential. After lyophilization no significant changes was observed in particle size with good physical stability, so it could be a good choice for conventional drug delivery system by doing further investigation as in vitro and in vivo study


Sign in / Sign up

Export Citation Format

Share Document