scholarly journals Performance of Fly Ash as Replacement for Non-Renewable Constituent in Asphaltic Concrete for Road Development

2021 ◽  
Vol 11 ◽  
pp. 25-33
Author(s):  
Ezemenike Chukwuka ◽  
Oyedepo Olugbenga ◽  
Aderinlewo Olufikayo ◽  
Oladele O. Isiaka

The non-renewable constituent used in asphalt concrete consumed large amount of materials resulting an increase in the price of asphalt mixture and consequently the cost of road development. On the other hand, huge industrial waste being generated daily from human activities causes environmental degradations. Thus, the study evaluates the performance of fly ash (FA) in asphalt concrete development targeted for road application. The aggregate, bitumen, and fly ash were characterized before being used. The stone dust in asphalt mixture was replaced with FA in predetermined proportions of 2, 4, 6, and 8% to produce a cylindrical specimen of asphalt mixture concrete. Marshal stability test, flow test, X-ray diffraction (XRD), X-ray Fluorescence (XRF) and Scanning Electron Microscope (SEM) was conducted on the composite samples. From the results, stability values of 7.39, 7.70, 7.90 and 8.22 KN was obtained at 2, 4, 6 and 8% replacements, respectively. Hence, the optimum value of 8.22 KN obtained from 8% partial replacement with FA is adequate for heavy traffic while other partial replacement from 2- 6% with stability within the range of 7.39-7.90 KN is suitable for medium traffic in accordance with the criteria for the marshal mix design method provided by Asphalt institute (1997). Corresponding values of 3.7, 3.5, 3.3 and 3.0 mm was obtained for the flow. The flow, air void, void in mineral aggregates and void filled with bitumen results all satisfied Nigeria general specification for road and bridges (1997). Therefore, fly ash can be used as partial replacement in asphaltic concrete to enhance the performance of the mix with a reduced cost for pavement construction.

2018 ◽  
Vol 2 (01) ◽  
pp. 87
Author(s):  
Muhammad Sadillah ◽  
M. Zainul Arifin ◽  
Achmad Wicaksono

In an effort to increase the strength of mixed asphalt concrete structure ( AC-WC ) in addition to the use of hot asphalt mixture with new specification, the selection of material type used is very important. In addition to asphalt, both coarse and fine aggregates and fillers are one component in a pavement construction that has a large role. Therefore further research is needed on the influence of temperature variation and percentage of filler fly ash to the modulus of r esilien which is good so that it can be applied and able to overcome the damages. In this research is divided into 3 (three) stages namely (1) the selection of materials; (2) the preparation of the specimen; (3) research and data analysis. Asphalt concrete mixed test (AC-WC) showed that Asphalt Optimum (KAO) content with 5.5% asphalt content with VIM value of 3.70%, VMA of 19.00%, Stability of 1,152.93 kg, Flow of 2.78 mm and MQ of 417.39 kg/mm. The result of mixed asphalt concrete (AC-WC) asphalt with filler fly ash test showed that the optimum mixture content was 7% filler content with VIM value 4,21%, VMA 19,21%, Stability 1326.10 kg, Flow of 3.69 mm and MQ of 360.13 kg/mm. Dalam upaya meningkatkan kekuatan struktur campuran beton aspal lapisan aus (AC-WC) selain perlu adanya penggunaan campuran beraspal panas dengan spesifikasi baru, pemilihan jenis material yang digunakan adalah sangat penting. Selain aspal, agregat baik kasar maupun halus serta filler adalah salah satu komponen dalam suatu konstruksi perkerasan jalan yang mempunyai peranan besar. Oleh karena itu diperlukan penelitian lebih lanjut mengenai pengaruh variasi temperatur dan prosentase filler fly ash terhadap modulus resilien yang baik sehingga dapat diterapkan dan mampu mengatasi kerusakan-kerusakan. Dalam penelitian ini terbagi dalam 3 (tiga) tahapan yaitu (1) tahapan pemilihan bahan; (2) tahap persiapan benda uji; (3) tahap penelitian dan analisis data. Hasil pengujian campuran aspal beton lapis aus (AC-WC) menunjukan bahwa Kadar Aspal Optimum (KAO) yaitu dengan kadar aspal 5,5% dengan nilai VIM sebesar 3.70%, VMA sebesar 19,00%, Stabilitas sebesar 1.152,93 Kg, Flow sebesar 2,78 mm dan MQ sebesar 417,39 Kg/mm. Hasil pengujian campuran aspal beton lapis aus (AC-WC) dengan penggantian filller fly ash menunjukan bahwa kadar campuran optimum yaitu dengan kadar filler 7% dengan nilai VIM sebesar 4,21%, VMA sebesar 19,21%, Stabilitas sebesar 1326.10 Kg, Flow sebesar 3,69 mm dan MQ sebesar 360.13 Kg/m.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Anh Thang Le ◽  
Manh Tuan Nguyen ◽  
Van Phuc Le

The spent fluid catalytic cracking (SFCC), waste from the petroleum industry, is nonstop increasing and causing environmental pollution in Vietnam. This study is an attempt to recycle SFCC in pavement construction. The study investigated the effect of SFCC, as a filler material in the hot-mix asphalt (HMA), on the essential characteristics of the asphalt concrete mix. First, the optimum percentages of bitumen and SFCC rate were investigated based on the Marshall design method. The HMA with SFCC showed more enhanced stability, flow, and other Marshall properties than the asphalt concrete mixture with the optimum limestone filler of 5%. Besides, the effects of SFCC rates on Marshall characteristics were explored. Second, performance tests were conducted to compare the mix with the different optimum content fillers of SFCC, limestone, and Portland cement. The tests include wheel tracking, indirect tensile, fatigue, and dynamic modulus tests to evaluate the performance of HMA with SFCC. It was found that the asphalt mixture with the optimum SFCC filler content can enhance pavement performance and improve the rutting and cracking resistance of the asphalt pavement.


2017 ◽  
Vol 866 ◽  
pp. 199-203
Author(s):  
Chidchanok Chainej ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The aims of this research were study the microstructures and mechanical properties for partial replacement of cement with Fly ash (FA) and kaolin waste (KW). Ordinary Portland cement were partially replaced with FA and KW in the range of 25-35% and 10-25% by weight of cement powder. The kaolin waste was ground for 180 minutes before using. The specimen was packing into an iron mold which sample size of 5×5×5 cm3. Then, the specimens were kept at room temperature for 24 hours and were moist cured in the incubation lime water bath at age of 3 days. After that the specimens were dry cured with plastic wrap at age of 3, 7, 14 and 28 days. After that the compounds were examined by x-ray diffraction patterns (XRD) and the microstructures were examined by scanning electron microscopy (SEM). The compressive strength was then investigated.


2019 ◽  
Vol 15 (1) ◽  
pp. 206-226 ◽  
Author(s):  
Kabiru Abdullahi Ahmad ◽  
Norhidayah Abdul Hassan ◽  
Mohd Ezree Abdullah ◽  
Munder A.M. Bilema ◽  
Nura Usman ◽  
...  

Purpose In order to fully understand the properties of porous asphalt, investigation should be conducted from different point of views. This is from the fact that porous asphalt mixture designed with the same aggregate gradation and air void content can give different infiltration rate due to the different formation of the internal structure. Therefore, the purpose of this paper is to investigate the micro-structural properties and functional performance of porous asphalt simultaneously. Design/methodology/approach The aim is to develop imaging techniques to process and analyze the internal structure of porous asphalt mixture. A few parameters were established to analyze the air void properties and aggregate interlock within the gyratory compacted samples captured using a non-destructive scanning technique of X-ray computed tomography (CT) throughout the samples. The results were then compared with the functional performance in terms of permeability. Four aggregate gradations used in different countries, i.e. Malaysia, Australia, the USA and Singapore. The samples were tested for resilient modulus and permeability. Quantitative analysis of the microstructure was used to establish the relationships between the air void properties and aggregate interlock and the resilient modulus and permeability. Findings Based on the results, it was found that the micro-structural properties investigated have successfully described the internal structure formation and they reflect the results of resilient modulus and permeability. In addition, the imaging technique which includes the image processing and image analysis for internal structure quantification seems to be very useful and perform well with the X-ray CT images based on the reliable results obtained from the analysis. Research limitations/implications In this study, attention was limited to the study of internal structure of porous asphalt samples prepared in the laboratory using X-ray CT but can also be used to assess the quality of finished asphalt pavements by taking core samples for quantitative and qualitative analysis. The use of CT for material characterization presents a lot of possibilities in the future of asphalt concrete mix design. Originality/value Based on the validation process which includes comparisons between the values obtained from the image analysis and those from the performance test and it was found that the developed procedure satisfactorily assesses the air voids distribution and the aggregate interlock for this reason, it can be used.


UKaRsT ◽  
2018 ◽  
Vol 2 (2) ◽  
pp. 8
Author(s):  
Sugeng Dwi Hartantyo ◽  
Rasiyo Hepiyanto

Laston is a mixture of coarse aggregate, fine aggregate, and filler with a binder under the temperature of 145-155oC with the composition being studied and regulated by technical specifications. Laston is also known as AC (Asphalt Concrete).Laston itself is commonly used in Indonesia with continuous gradations used for heavy traffic loads. To get the addictive material is not easy and the material is expensive. Therefore, it is necessary to find alternatives to the cellulose fiber. Water hyacinth is a water weed that once grow and develop, it has high cellulose fiber content, which is about 60%.For that, done a research to add a hot asphalt mixture material that aims to improve the quality of mixed result. The selected material is natural water hyacinth. The method used is trial and error with reference of SNI 03-1737-1989. Variations used are 3%, 5%, and 7% of the asphalt weight, asphalt level used Is 5.61%.The result of this study is Marshall evaluation where the greatest score obtained for stability is 1325 kg,  Flow is 3.73 mm, Quotient Marshall is 401.02 kg/mm, VMA is 66.30%, VFWA is 19.25%, and VIM score is 54.35 %. With this result, the asphalt mixture can not be used because the results of VMA, VFWA, and VIM have not been suitable on specification of SNI 03-1737-1989.  Keywords: Laston, Asphalt Concrete, Water Hyacinth, SNI 03-1737-1989.


2012 ◽  
Vol 509 ◽  
pp. 123-127
Author(s):  
Shao Peng Wu ◽  
Pei Qiang Cui ◽  
Deng Feng Zhang

The property of aggregate has a significant effect on the performance of asphalt mixture because of its high proportion. Asphalt mixture prepared by some kind of aggregate cause the inadequate compaction problem, which results in moisture damage due to its large air void. Limestone manufactured sand is considered as one of the useful solution to overcome the compaction problem. In this paper, fine aggregate is substituted by different proportion of limestone manufactured sand (LMS). The effect of replacement ratio on volume properties and pavement performance is studied. The results show that the limestone manufactured sand can improve the pavement performance and is benefit to the compaction of andesite asphalt mixture. Furthermore, this research also provided some valuable parameters for guiding the pavement construction in the future.


2021 ◽  
Vol 45 (1) ◽  
pp. 11-15
Author(s):  
Arabi N.S. Al Qadi ◽  
Taisir S. Khedaywi ◽  
Madhar A. Haddad ◽  
Owies A. Al-Rababa'ah

Technology in transportation used available resources to make it safe, fast, suitable, easy, economic, and environmental to transport people and goods. Olive Husk became an environmental problem as waste materials especially in the Middle East where huge quantities are found. The objective of this research is to investigate the effect of addition of Olive Husk Ash (OHA) on the properties of asphalt concrete mixtures. Marshall Test was used to perform the asphalt concrete mixture by the addition of OHA to the binder of asphalt; different percentages of OHA (0, 5, 10, 15, and 20%) by volume were added to the binder. Five percent of asphalt cements (5, 5.5, 6, 6.5 and 7%) by weight and limestone aggregate were used for preparing asphalt mixture specimens to find the optimum content of asphalt that could be used in the binder. Tests on flow, stability, air void percentage and void in mineral aggregate, retained stability, stiffness, and retained stiffness were made. The principle results on OHA as filler in Asphalt binder improves the Marshall Stability, and void in mineral aggregate and decrease in flow, retained stability, stiffness, and retained stiffness with a 10%-15% of olive husk ash replacement of asphalt binder. The contribution that OHA could be used as a pavement construction material in field.


2014 ◽  
Vol 599 ◽  
pp. 287-290 ◽  
Author(s):  
Peng Cui ◽  
Yang Sang ◽  
Bao Quan Li ◽  
Hai Xia Zhang

In this paper, the asphalt mixture proportions for Hao-Tong highway was investigated using Sup25 gradation design method. Marshall Test was applied to estimate performance of asphalt concrete. Based on the actual project application, the methods of construction technology and construction quality control of Sup25 asphalt mixture were discussed in this paper. The test results showed that water permeability, degree of compaction and rutting of the Sup25 asphalt mixture layer meet the requirements of Chinese specification.


2018 ◽  
Vol 1 (3) ◽  
pp. 679-688
Author(s):  
Ondriani Ondriani ◽  
Sofyan M. Saleh ◽  
Muhammad Isya

Abstract: The cause of damage and strength reductionon highway flexible pavement isthe low strength and durability on the wear layer. To cope withthis problem, it is necessary to add some particular additivethat can increase the asphalt concrete performance. One of the additional material that can be used are plastic. Stone ash, cement and fly ash has been commonly used as a filler in asphalt mixture. But these kind of filler was hard to get and the price were relatively expensive. The coconut fiber ash wich has a specific grafity greater than asphalt is expected to be one alternative. This research aims to determine the influence of plastic wastecombination substitution into the asphalt pen. 60/70 and the use of coconut fiber ash as filler on AC-WC mixture performance. The plastic used in this research is polyethylene terephthalate, polypropylene and polystyrene. The early stages of this research is to find the optimum asphalt content (OAC). After OAC obtained, then the specimens were mixed without and with the combination substitution of plastic waste as much as 2.7%; 4.7%; 6.7% against the weight of  asphalt on OAC + 0.5% with and without the coconut fiber ash as a filler. The study results showed the use of plastic waste combination and the coconut fiber ash can not improve the durability value. The highest value of durability obtained at 4.7% combination substitution of plastic waste, it was 77.53%, While the lowest was in substitution of 6.7% plastic waste combination with 38.27% coconut fiber  ash as a filler. The duration value of AC-WC mixture with plastic waste combination substitution and the use of coconut fiber ash filler did not meet the requirement that is 90%.Abstrak: Penyebab kerusakan dan penurunan kekuatan perkerasan lentur jalan raya adalah rendahnya kekuatan dan keawetan di dalam lapisan aus. Untuk menanggulangi hal ini dibutuhkan suatu bahan tambah yang dapat meningkatkan lapis aspal beton. Salah satu bahan tambah yang dapat di gunakan adalah plastik. Abu batu, semen dan fly ash sudah biasa digunakan sebagai filler dalam campuran aspal. Tetapi, jenis filler tersebut susah didapatkan dan harganya relatif mahal. Abu serabut kelapa yang memiliki berat jenis lebih besar dari aspal, diharapkan dapat menjadi alternatifnya. Penelitian ini bertujuan untuk mengetahui nilai durabilitas campuran AC-WC menggunakan kombinasi limbah plastik dan abu serabut kelapa. Plastik yang digunakan pada penelitian ini adalah Polyethylene Terephthalate, Polypropylenedan Polystyrene. Tahap awal penelitian ini adalah mencari kadar aspal optimum (KAO). Setelah KAO didapat kemudian dilakukan pembuatan benda uji tanpa dan dengan substitusi kombinasi limbah plastik sebesar 2,7%; 4,7%; 6;7% terhadap berat aspal pada KAO + 0,5% tanpa dan dengan abu serabut kelapa sebagai filler. Hasil penelitian menunjukkan penggunaan kombinasi limbah plastik tidak dapat meningkatkan nilai durabilitas. Nilai durabilitas tertinggi didapat pada substitusi kombinasi limbah plastik 4,7% yaitu 77,53% sedangkan yang terendah terdapat pada subtitusi kombinasi limbah plastik 6,7% dengan filler abu serabut kelapa yaitu 38,27%. Nilai Durabilitas campuran AC-WC dengan substitusi kombinasi limbah plastik   dan penggunaan abu serabut kelapa sebagai filler tidak memenuhi syarat yaitu 90%.


Sign in / Sign up

Export Citation Format

Share Document