Asphalt Mixture Proportion Design Method of Coarse Graded High-Modulus Asphalt Concrete with Skeleton-Embedded Structure

Author(s):  
Qian Xiao ◽  
Hai-bing Jin ◽  
Hai-yan Liu ◽  
Qing Xiao
Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1449
Author(s):  
Wenfeng Wang ◽  
Shaochan Duan ◽  
Haoran Zhu

In order to improve the durability of the asphalt pavement on a cement concrete bridge, this study investigated the effect of the modulus of the asphalt mixture at the bottom layer on the mechanical response of bridge pavement, along with a type of emerging bridge pavement structure. In addition, the design method and pavement performance of a high-modulus asphalt mixture were investigated using laboratory and field tests, and the life expectancy of the deck pavement structure was predicted based on the rutting deformation. The results showed that the application of a high-modulus asphalt mixture as the bottom asphalt layer decreased the stress level of the pavement structure. The new high-modulus asphalt mixture displayed excellent comprehensive performance, i.e., the dynamic stability reached 9632 times/mm and the fatigue life reached 1.65 million cycles. Based on the rutting depth prediction, using high-modulus mixtures for the bridge pavement prolonged the service life from the original 5 years to 10 years, which significantly enhanced the durability of the pavement structure. These research results could be of potential interest for practical applications in the construction industry.


2014 ◽  
Vol 599 ◽  
pp. 287-290 ◽  
Author(s):  
Peng Cui ◽  
Yang Sang ◽  
Bao Quan Li ◽  
Hai Xia Zhang

In this paper, the asphalt mixture proportions for Hao-Tong highway was investigated using Sup25 gradation design method. Marshall Test was applied to estimate performance of asphalt concrete. Based on the actual project application, the methods of construction technology and construction quality control of Sup25 asphalt mixture were discussed in this paper. The test results showed that water permeability, degree of compaction and rutting of the Sup25 asphalt mixture layer meet the requirements of Chinese specification.


2021 ◽  
Vol 11 ◽  
pp. 25-33
Author(s):  
Ezemenike Chukwuka ◽  
Oyedepo Olugbenga ◽  
Aderinlewo Olufikayo ◽  
Oladele O. Isiaka

The non-renewable constituent used in asphalt concrete consumed large amount of materials resulting an increase in the price of asphalt mixture and consequently the cost of road development. On the other hand, huge industrial waste being generated daily from human activities causes environmental degradations. Thus, the study evaluates the performance of fly ash (FA) in asphalt concrete development targeted for road application. The aggregate, bitumen, and fly ash were characterized before being used. The stone dust in asphalt mixture was replaced with FA in predetermined proportions of 2, 4, 6, and 8% to produce a cylindrical specimen of asphalt mixture concrete. Marshal stability test, flow test, X-ray diffraction (XRD), X-ray Fluorescence (XRF) and Scanning Electron Microscope (SEM) was conducted on the composite samples. From the results, stability values of 7.39, 7.70, 7.90 and 8.22 KN was obtained at 2, 4, 6 and 8% replacements, respectively. Hence, the optimum value of 8.22 KN obtained from 8% partial replacement with FA is adequate for heavy traffic while other partial replacement from 2- 6% with stability within the range of 7.39-7.90 KN is suitable for medium traffic in accordance with the criteria for the marshal mix design method provided by Asphalt institute (1997). Corresponding values of 3.7, 3.5, 3.3 and 3.0 mm was obtained for the flow. The flow, air void, void in mineral aggregates and void filled with bitumen results all satisfied Nigeria general specification for road and bridges (1997). Therefore, fly ash can be used as partial replacement in asphaltic concrete to enhance the performance of the mix with a reduced cost for pavement construction.


2021 ◽  
Author(s):  
Jan Valentin ◽  
Majda Belhaj ◽  
Pavla Vacková

High modulus asphalt concrete (HMAC) presents a concept of an asphalt mixture with advanced performance which is suitable mainly for heavy loaded pavement structures. The mix concept was developed more than 25 years ago in France and became a standard in many countries. In the Czech Republic this type of asphalt mixtures is used since the early years of this millennium, when original technical requirements have been set. After almost 20 years a volunteer technical assessment started to validate whether the technical requirement set mainly for stiffness values and partly also for flexural strength or resistance to crack propagation are still up-to-date or if some reasonable modification is needed like was done several years ago in France when high modulus asphalt concrete of so called EME II or GP5 generation were brought to the practice. Based on this a study with focus on stiffness determination for more than 40 different HMACs was started. The stiffness was tested at different temperatures. At the same time virgin and aged asphalt mixtures were compared. Results from this study are presented by the paper.


2011 ◽  
Vol 311-313 ◽  
pp. 2138-2141 ◽  
Author(s):  
Chun Ying Wu ◽  
Bin Jing ◽  
Xiao Yan Li

According to LPC Bituminous Mixtures Design Guide, performance of several kinds of additives for high modulus asphalt mixture is evaluated by tests. It has done performance comparison among AC20, Sup20 and EME20 using AH70# asphalt. The results show that high modulus asphalt mixture EME2 has high temperature stability and anti-fatigue capability. The testing results in the article had proved that the existing China-made additives can also meet the requirement of High Modulus Asphalt Concrete (HMAC). The mix design of AC20 and Sup20 was done according to LPC Bituminous Mixtures Design Guide, test results are basically the same as EME20 and meet the design requirement. So it can consider using HMAC which satisfies China’s requirement in China.


2021 ◽  
Vol 27 (3) ◽  
pp. 113-129
Author(s):  
Ghaidaa Abdl Wahab Majeed ◽  
Saad Issa Sarsam

Porous asphalt paving is a modern design method that differs from the usual asphalt pavements' traditional designs. The difference is that the design structure of porous pavements allows the free passage of fluids through their layers, which controls or reduces the amount of runoff or water accumulated in the area by allowing the flow of rain and surface runoff.  The cross-structure of this type of paving works as a suitable method for managing rainwater and representing groundwater recharge. The overall benefits of porous asphalt pavements include environmental services and safety features, including controlling the build-up of contaminated metals on the road surface, rainwater management, resistance to slipping accidents, reduced splashing, and spraying pedestrians and drivers. In this study, the porous mixture's volumetric and physical properties were tested, and the use of carbon fibers as a type of mixture improver. The results were compared after performing the following steps: Selecting the best gradient for the porous asphalt mixture by selecting the largest proportion of air voids from three gradations group according to specifications (ASTM 7064), then choosing the optimum asphalt ratio according to the standard specifications, which are the value of drain down % and the Cantabro abrasion loss % value, as well as the ratio of air voids. After obtaining the optimum asphalt ratio, samples of the asphalt mixture were prepared. Carbon fibers were added to it at a rate of (0.3%) by weight of the total mix and a length of (2 cm) and prepared samples without additives. They were tested by a Marshall device to calculate the stability and flow value and show the effects of fibers on porous asphalt concrete properties. An increase in the stability value and a decrease in the flow and reduction in the drain down rate during exposure to high temperature were observed for the samples containing carbon fibers, by 48.8%, 44%, and 72%, respectively


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Anh Thang Le ◽  
Manh Tuan Nguyen ◽  
Van Phuc Le

The spent fluid catalytic cracking (SFCC), waste from the petroleum industry, is nonstop increasing and causing environmental pollution in Vietnam. This study is an attempt to recycle SFCC in pavement construction. The study investigated the effect of SFCC, as a filler material in the hot-mix asphalt (HMA), on the essential characteristics of the asphalt concrete mix. First, the optimum percentages of bitumen and SFCC rate were investigated based on the Marshall design method. The HMA with SFCC showed more enhanced stability, flow, and other Marshall properties than the asphalt concrete mixture with the optimum limestone filler of 5%. Besides, the effects of SFCC rates on Marshall characteristics were explored. Second, performance tests were conducted to compare the mix with the different optimum content fillers of SFCC, limestone, and Portland cement. The tests include wheel tracking, indirect tensile, fatigue, and dynamic modulus tests to evaluate the performance of HMA with SFCC. It was found that the asphalt mixture with the optimum SFCC filler content can enhance pavement performance and improve the rutting and cracking resistance of the asphalt pavement.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Seong-Hyeok Lee ◽  
Dae-Wook Park ◽  
Hai Viet Vo ◽  
Samer Dessouky

The research has been initiated to develop the asphalt mixtures which are suitable for the surface of asphalt concrete directly fastened track (ADFT) system and evaluate the performance of the asphalt mixture. Three aggregate gradations which are upper (finer), medium, and below (coarser). The nominal maximum aggregate size of asphalt mixture was 10 mm. Asphalt mixture design was conducted at 3 percent air voids using Marshall mix design method. To make impermeable asphalt mixture surface, the laboratory permeability test was conducted for asphalt mixtures of three different aggregate gradations using asphalt mixture permeability tester. Moisture susceptibility test was conducted based on AASHTO T 283. The stripping percentage of asphalt mixtures was measured using a digital camera and analyzed based on image analysis techniques. Based on the limited research results, the finer aggregate gradation is the most suitable for asphalt mixture for ADFT system with the high TSR value and the low stripping percentage and permeable coefficient. Flow number and beam fatigue tests for finer aggregate asphalt mixture were conducted to characterize the performance of asphalt mixtures containing two modified asphalt binders: STE-10 which is styrene-butadiene-styrene (SBS) polymer and ARMA which is Crum rubber modified asphalt. The performance tests indicate that the STE-10 shows the higher rutting life and fatigue life.


Author(s):  
Mohamed Mounir Boussabnia ◽  
Daniel Perraton ◽  
Sebastien Lamothe ◽  
Hervé Di Benedetto ◽  
Charles Neyret ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document