Efficacy of Entomopathogenic Nematode, Steinernema dharanaii (TFRIEPN-15) against Termite, Odontotermes obesus (Isoptera: Termitidae)

2019 ◽  
Vol 42 (4) ◽  
pp. 392-397
Author(s):  
Sanjay Paunikar ◽  
◽  
N. Kulkarni ◽  

Entomopathogenic nematodes (EPNs) in the genera Steinernema and Heterorhabditis and their associated bacteria such as Xenorhabdus spp. and Photorhabdus spp. are lethal parasites of soil dwelling and cryptic habit insects. Termites are one of the most severe soil insect pests of number of forestry, agricultural, households items and plantation crops in India and abroad. The efficacy of new native species of entomopathogenic nematode (TFRIEPN-15), Steinernema dharanaii against termites, Odontotermes obesus was tested under laboratory conditions. The termite, Odontotermes obesus was exposed to Infective Juveniles (IJs) from numbers 3 to 40 IJs termite-1. The dose- dependent mortality was noted of the termites. The lowest dose of 3IJs termites-1 caused 26.67% mortality which was significantly superior control treatment. The highest dose of 40IJs termites-1 caused 72.00% mortality was recorded. These experiments have proved that native isolated entomopathogenic nematodes can be used successfully to control termites and other soil insect pests with simple and effective field application techniques achieving 100% mortality of the treated insects.

Author(s):  
Mahfouz M. M. Abd-Elgawad

AbstractCost and reliability have hindered entomopathogenic nematodes (EPNs) from realizing their full market size. Research approaches continually evolve in response to these issues. They address EPN basics, but other issues are less recognized among masses working on these biocontrol agents. So, this review emphasizes on the due but less recognized roles to optimize EPN research and get better findings in nematode realm. Being almost impossible for nematologists to act united, they need to use standardized procedures which allow future reviews to be analytical and may build on them. Current atypical sampling procedures of EPNs may lead to erratic results. Comparable sampling may better enable grasping the interaction between EPN distribution and agricultural management to develop more swiftly field application techniques and can introduce EPNs’ populations to a more even distribution designed to enhance their efficacy. Functional sampling should be expanded. Furthermore, EPNs should be included in integrated pest management programs in ways that make them complimentary or superior to chemical pesticides. Further modeling of EPNs’ populations should be tried. The few transgenic methods applied in EPNs should be followed up to address non-stability of selected beneficial traits and markers of beneficial genes. Awareness-raising of more growers, cooperatives, and extensions of EPNs as bio-insecticides for both plant and livestock pests should be attempted in earnest via broad and deep training. We should better communicate and apply the positive trends and standardization in EPNs’ research. Required but less known services to optimize research in the nematode realm should further be addressed.


2008 ◽  
Vol 65 (4) ◽  
pp. 433-437 ◽  
Author(s):  
Juan Carlos Lara ◽  
Cláudia Dolinski ◽  
Elias Fernandes de Sousa ◽  
Rogério Figueiredo Daher

Entomopathogenic nematodes (EPNs) are currently being used as successful biological control agents of soil-dwelling insect pests. Previous field and greenhouse studies demonstrated that application techniques and non-biotic factors (temperature and pressure) have a significant effect on EPNs efficacy. The objective of this study was to evaluate the influence of an irrigation spray application system on the viability, infectivity and host search capability of Heterorhabditis baujardi LPP7 (Nematoda: Heterorhabditidae) infective juveniles (IJ). Two assays were proposed. Their viability was evaluated under the microscope after the IJ passed through the irrigation system. Infectivity on Galleria mellonella larvae, and host search capability, as evidenced by larval mortality, were evaluated in containers (Experiment 1). In the field (Experiment 2), mortality of G. mellonella larvae was evaluated under different nematode concentrations (0, 100,000, 300,000 and 500,000 IJ per tree). No differences were recorded on the viability, infectivity and host search capability of the IJ in Experiment 1. In Experiment 2, differences were recorded among the different concentrations used (p < 0.05), and a higher mortality was observed at the highest nematode concentration (28.3% and 37% in each one of the two experiment repetitions). This irrigation system did not affected adversely the viability, infectivity and host search capability of H. baujardi LPP7.


2020 ◽  
Vol 21 (2) ◽  
pp. 580 ◽  
Author(s):  
Marcin Skowronek ◽  
Ewa Sajnaga ◽  
Małgorzata Pleszczyńska ◽  
Waldemar Kazimierczak ◽  
Magdalena Lis ◽  
...  

The mechanisms of action of the complex including entomopathogenic nematodes of the genera Steinernema and Heterorhabditis and their mutualistic partners, i.e., bacteria Xenorhabdus and Photorhabdus, have been well explained, and the nematodes have been commercialized as biological control agents against many soil insect pests. However, little is known regarding the nature of the relationships between these bacteria and the gut microbiota of infected insects. In the present study, 900 bacterial isolates that were obtained from the midgut samples of Melolontha melolontha larvae were screened for their antagonistic activity against the selected species of the genera Xenorhabdus and Photorhabdus. Twelve strains exhibited significant antibacterial activity in the applied tests. They were identified based on 16S rRNA and rpoB, rpoD, or recA gene sequences as Pseudomonas chlororaphis, Citrobacter murliniae, Acinetobacter calcoaceticus, Chryseobacterium lathyri, Chryseobacterium sp., Serratia liquefaciens, and Serratia sp. The culture filtrate of the isolate P. chlororaphis MMC3 L3 04 exerted the strongest inhibitory effect on the tested bacteria. The results of the preliminary study that are presented here, which focused on interactions between the insect gut microbiota and mutualistic bacteria of entomopathogenic nematodes, show that bacteria inhabiting the gut of insects might play a key role in insect resistance to entomopathogenic nematode pressure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camila C. Filgueiras ◽  
Denis S. Willett

AbstractEntomopathogenic nematodes are typically considered lethal parasites of insect hosts. Indeed they are employed as such for biological control of insect pests. The effects of exposure to entomopathogenic nematodes are not strictly limited to mortality, however. Here we explore non-lethal effects of exposure to entomopathogenic nematodes by introducing the relatively non-susceptible pupal stage of Delia antiqua to thirteen different strains. We specifically chose to inoculate the pupal stage because it tends to be more resistant to infection, yet resides in the soil where it could come into contact with EPN biological control agents. We find that there is no significant mortality at the pupal stage, but that there are a host of strain-dependent non-lethal effects during and after the transition to adulthood including altered developmental times and changes in risk of death compared to controls. We also find that exposure to specific strains can reduce risk of mortality. These results emphasize the strain-dependent nature of entomopathogenic nematode infection and highlight the positive and negative ramifications for non-lethal effects for biological control of insect pests. Our work emphasizes the need for strain-specific screening of biological control agents before wide-spread adoption.


Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 832
Author(s):  
Wei-Ting Liu ◽  
Tien-Lai Chen ◽  
Roger F. Hou ◽  
Cheng-Chen Chen ◽  
Wu-Chun Tu

The Asian tiger mosquito, Aedes albopictus, is of crucial concern to the public and veterinary health because of its vector role in transmission of several mosquito-borne diseases. Over the past decades, entomopathogenic nematodes (EPNs) have been used to control important agricultural insect pests and are considered to be effective against mosquitoes as well. The objectives of this study were to investigate the mosquitocidal effects of Steinernema abbasi to Ae. albopictus and the encapsulation processes of invading nematodes in the mosquito host. In this study, we found that S. abbasi was pathogenic to 3rd and 4th instar larvae of Ae. albopictus by entering the hemocoel of the 3rd and 4th instar larvae mainly through mouth and gastric caecum or by penetrating pupae through the intersegmental membrane or trumpet. The mosquito larvae infected with a single nematode caused a high mortality. Although EPNs in the hemocoel of mosquitoes were melanized and encapsulated, most Ae. albopictus larvae failed to survive after infection with S. abbasi. Overall, we demonstrated that S. abbasi is pathogenic to Ae. albopictus larvae, suggesting that this S. abbasi isolate has potential as a biocontrol agent for managing this vector mosquito.


2019 ◽  
Vol 21 (2) ◽  
pp. 126-138
Author(s):  
Andressa Lima de Brida ◽  
Silvia Renata Siciliano Wilcken ◽  
Luis Garrigós Leite ◽  
Flávio Roberto Mello Garcia

Drosophila suzukii is considered one of the most important pests of fruit farming. Due to its rapid expansion, control alternatives of this fly should be investigated. The use of entomopathogenic nematodes (EPNs) represents an important tool in the control. This study aimed to evaluate the virulence of EPNs isolates in pupae and the repercussion in adults of D. suzukii in laboratory. The experiment was conducted in a completely randomized design with five treatments and five replicates. Each plot consisted of a Petri dish lined with two sheets of filter paper. The isolates Heterorhabditis amazonensis IBCBn 24, Heterorhabditis indica IBCBn 05, Steinernema carpocapsae IBCBn 02 and Steinernema feltiae IBCBn 47 were inoculated into 2 mL at the concentration of 1,000 infective juveniles IJs/mL. The control treatment consisted of 2 mL distilled water. After inoculation, five pupae of D. suzukii were placed in the Petri dishes, which were then sealed and stored in a BOD climate chamber at 26 ± 1ºC, 70 ± 10% RH in the dark. Assessments were performed daily until the emergence of adults. Dead pupae and adults were dissected for the observation and quantification of IJs. The isolates, H. indica IBCBn 05, H. amazonensis IBCBn 24, S. carpocapsae IBCBn 02 and S. feltiae IBCBn 47, infected and made unviable 35.0, 16.0, 13.0 and 43.0% in pupae and 47.0, 80.0, 84.0 and 57.0 % in adults of D. suzukii. H. indica IBCBn 05 obtained the highest number of IJs produced in pupae and adults, 35.0 and 125.0.


Author(s):  
Mariyono Mariyono ◽  
Eko Yuliarsha Sidhi ◽  
Nugraheni Hadiyanti

The utilization of entomopathogenic nematodes is an example of the uses of an environmentally friendly biological agent. Entomopathogenic nematodes of the family Steinernematidae and Hetrorhabditidae are very potential to control insect pests. The purpose of this study was to study the pathogenicity of the entomopathogenic nematode Steinernema carpocapsae (all strains) as a biological control against Plutella xylostella. This research includes 2 stages, namely the preparation stage and laboratory experiments. The experimental design in this study was a completely randomized design (CRD) consisting of six treatments and three replications. The treatments tested were entomopathogenic nematode concentrations consisting of six levels: 0, 8, 16, 32, 64 and 128 infective juvenile per ml. The LC50 and LT50 values were calculated using Probit analysis. The results of observations of nematodes that enter the insect body and pest mortality were analyzed using analysis of variance (ANOVA), once showing a significant difference, it was then continued to the DMRT test at 5% level. Based on the results of the study, the highest pathogenicity against Plutella xylostella was Steinernema carpocapsae (all strains) when compared to Steinernema glaseri (NC) and Steinernema sp. local isolates. Resistance to Steinernema carpocapsae (all strains) and the LC50 value were determined by the age of Plutella xylostella larvae. The bigger and older the larvae, the more its resistance to Steinernema carpocapsae (All strains) and the LC50 value. The number of entomopathogenic nematodes that enter the body of Plutella xylostella increased with increasing length of contact time.Penggunaan nematoda entomopatogen merupakan salah satu pemanfaatan agensia hayati yang ramah lingkungan. Nematoda entomopatogen dari famili Steinernematidae dan Hetrorhabditidae sangat potensial untuk mengendalikan serangga hama. Tujuan dari penelitian ini adalah mempelajari patogenisitas nematoda entomopatogen Steinernema carpocapsae (all strain) sebagai pengendali hayati terhadap hama Plutella xylostella. Penelitian ini meliputi 2 tahap yaitu tahap persiapan dan percobaan laboratorium. Rancangan percobaan pada penelitian ini adalah Rancangan Acak Lengkap (RAL) yang terdiri enam perlakuan dan tiga ulangan. Perlakuan yang diujikan adalah konsentrasi nematoda entomopatogen yang terdiri enam taraf: 0, 8, 16, 32, 64 dan 128 infektif juvenile/ml. Nilai LC50 dan LT50 dihitung menggunakan analisis probit. Hasil pengamatan nematoda yang masuk dalam tubuh serangga dan mortalitas hama dianalisis menggunakan analisis sidik ragam (ANOVA), apabila menunjukkan beda nyata dilanjutkan uji DMRT taraf 5%. Berdasarkan hasil penelitian, patogenisitas tertinggi terhadap Plutella xylostella adalah Steinernema carpocapsae (all strain) bila dibandingkan dengan Steinernema glaseri (NC) dan Steinernema sp. isolat lokal. Ketahanan terhadap Steinernema carpocapsae (All strain) dan nilai LC50 ditentukan umur larva Plutella xylostella. Semakin besar dan tua umur larva, ketahanan terhadap Steinernema carpocapsae (All strain) dan nilai LC50 juga semakin meningkat. Jumlah nematoda entomopatogen yang masuk kedalam tubuh Plutella xylostella semakin banyak seiring dengan bertambah lamanya waktu kontak.


2017 ◽  
Vol 38 (02) ◽  
Author(s):  
Gitanjali Devi ◽  
Dhrubajyoti Nath

Biological control agents have become increasingly important component in integrated pest management programme. Entomopathogenic nematodes are effective biological control agents for many important insect pests of vegetable crops. Therefore entomopathogenic nematodes are gaining attention in the field of biocontrol research worldwide. With the development and improvement of isolation and identification technique many novel species and strains have been utilized for management of several insect pests. This review aims to explore the potentiality of entomopathogenic nematode species against economically important insect pest of vegetables in India as well as in other countries.


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Rashid Pervez ◽  
Showkat Ahmad Lone ◽  
Sasmita Pattnaik

Abstract Background Entomopathogenic nematodes (EPNs) harboring symbiotic bacteria are one of the safest alternatives to the chemical insecticides for the control of various insect pests. Infective juveniles of EPNs locate a target insect, enter through the openings, and reach the hemocoel, where they release the symbiotic bacteria and the target gets killed by the virulence factors of the bacteria. Photorhabdus with Heterorhabditis spp. are well documented; little is known about the associated bacteria. Main body In this study, we explored the presence of symbiotic and associated bacteria from Heterorhabditis sp. (IISR-EPN 09) and characterized by phenotypic, biochemical, and molecular approaches. Six bacterial isolates, belonging to four different genera, were recovered and identified as follows: Photorhabdus luminescens, one each strain of Providencia vermicola, Pseudomonas entomophila, Alcaligenes aquatilis, and two strains of Alcaligenes faecalis based on the phenotypic, biochemical criteria and the sequencing of 16S rRNA gene. Conclusion P. luminescens is symbiotically associated with Heterorhabditis sp. (IISR-EPN 09), whereas P. vermicola, P. entomophila, A. aquatilis, and A. faecalis are the associated bacteria. Further studies are needed to determine the exact role of the bacterial associates with the Heterorhabditis sp.


Sign in / Sign up

Export Citation Format

Share Document