scholarly journals RAINFALL PATTERN OVER PATIALA DURING MONSOON SEASON

MAUSAM ◽  
2021 ◽  
Vol 63 (4) ◽  
pp. 645-647
Author(s):  
M.S. TOMAR
2018 ◽  
Vol 5 (02) ◽  
Author(s):  
SUSHEEL KUMAR PATEL ◽  
N. SUBASH

In this study investigation of trends in rainfall over two subdivisions (East and West) of Uttar Pradesh was carried out. In both subdivisions decrease in rainfall during monsoon and increase in summer season has been observed. However in both the subdivisions during second three decades (1957-1986) increased in rainfall has been found during post monsoon. In West subdivision there was increase during second three (1957-1986) decades in monsoon season which decreased in current three decades (1987-2016). However in East subdivision continues decrease in rainfall has been noticed during monsoon season and during post monsoon decrease of 14 mm and 12 mm in rainfall was recorded, moreover in summer season increase of rainfall (4mm and 5mm) was noticed in East and West U P respectively. No seasonal significant trend in rainfall was noticed in both the subdivisions. As far as monthly analysis concern there was increase in rainfall (4-5mm) in the month of May and June. In East U P January, February, March, July, August, September, October, November and December months recorded decrease in rainfall and February and April remained constant. Similarly in West U P January, April, July, August, September, October and November recorded decrease in rainfall and February, March and April remained unchanged. This analysis provide an insight into the variability of rainfall pattern in both the subdivisions and useful for researchers and planners for their planning of construction of water holding structures in future.


2019 ◽  
Vol 25 (1) ◽  
Author(s):  
ADITYA NARAYAN

The present investigation deals with the prevalence of infection of cestode, Pseudoinverta oraiensis19 parasitizing Clarias batrachus from Bundelkhand Region (U.P.) India. The studies were recorded from different sampling stations of Bundelkhand region of Uttar Pradesh. For this study 360 fresh water fish, Clarias batrachus were examined. The incidence of infection, monsoon season (17.50%) followed by winter season (20.00%) whereas high in summer season (30.00%).


2018 ◽  
Vol 6 (2) ◽  
pp. 37-43
Author(s):  
Lalnun thari ◽  
◽  
John Zothanzama

The study was conducted to assess the association of Arbuscular Mycorrhizal Fungi (AMF) in maize from three different jhum fallows. The jhum fallows are of three different years i.e., 1-3 years, 4-6 years and 7-10 years. Root samples were taken from maize to study colonization of AMF and spores were recovered from the rhizosphere region of the roots. It was observed that soil properties, rainfall pattern as well as human exploitation affect AMF colonization of roots.


2018 ◽  
Vol 24 (2) ◽  
pp. 87-96
Author(s):  
Iput Pradiko ◽  
Eko Novandy Ginting ◽  
Nuzul Hijri Darlan ◽  
Winarna Winarna ◽  
Hasril Hasan Siregar

El Niño 2015 is one of the strongest El Niño. Drought stress due to El Niño could affect oil palm performances. This study was conducted to determine rainfall pattern and oil palm performance in Sumatra and Borneo Island during El Niño 2015. Data employed in this study is monthly rainfall data, Southern Oscillation Index (SOI) January-December 2015, andoil palm performances. Pearson correlation between SOI and rainfall data was used to analyze rainfall pattern, while oil palm performances were observed based on morphological conditions. Result shows that southern part of Sumatra and mostly part of Borneo suffer from more dry spell, dry month, and water deficit such as 37-133 days, 3-5 months, and 349-524 mm respectively. Analysis of rainfall pattern shows that Jambi, South Sumatra, Lampung, Central, South, and East Borneo are significantly (r ≥ +0,60) affected by El Niño 2015. Oil palms in southern part of Sumatra and mostly part of Borneo are suffer from drought stressmarked by the emergence of more than two spear fronds, appearing of many male flowers, malformations on bunches, fronds tend to hanging down, and lower fronds tend to dry.


2021 ◽  
Vol 13 (3) ◽  
pp. 1398
Author(s):  
Tavjot Kaur ◽  
Simerpreet Kaur Sehgal ◽  
Satnam Singh ◽  
Sandeep Sharma ◽  
Salwinder Singh Dhaliwal ◽  
...  

The present study was conducted to investigate the seasonal effects of five land use systems (LUSs), i.e., wheat–rice (Triticum aestivum—Oryza sativa) system, sugarcane (Saccharum officinarum), orange (Citrus sinensis) orchard, safeda (Eucalyptus globules) forest, and grassland, on soil quality and nutrient status in the lower Satluj basin of the Shiwalik foothills Himalaya, India. Samples were analyzed for assessment of physico-chemical properties at four soil depths, viz., 0–15, 15–30, 30–45, and 45–60 cm. A total of 120 soil samples were collected in both the seasons. Soil texture was found to be sandy loam and slightly alkaline in nature. The relative trend of soil organic carbon (SOC), macro- and micro-nutrient content for the five LUSs was forest > orchard > grassland > wheat–rice > sugarcane, in the pre- and post-monsoon seasons. SOC was highly correlated with macronutrients and micronutrients, whereas SOC was negatively correlated with soil pH (r = −0.818). The surface soil layer (0–15 cm) had a significantly higher content of SOC, and macro- and micro-nutrients compared to the sub-surface soil layers, due to the presence of more organic content in the soil surface layer. Tukey’s multiple comparison test was applied to assess significant difference (p < 0.05) among the five LUSs at four soil depths in both the seasons. Principle component analysis (PCA) identified that SOC and electrical conductivity (EC) were the most contributing soil indicators among the different land use systems, and that the post-monsoon season had better soil quality compared to the pre-monsoon season. These indicators helped in the assessment of soil health and fertility, and to monitor degraded agroecosystems for future soil conservation.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 959
Author(s):  
Benjamin Clark ◽  
Ruth DeFries ◽  
Jagdish Krishnaswamy

As part of its nationally determined contributions as well as national forest policy goals, India plans to boost tree cover to 33% of its land area. Land currently under other uses will require tree-plantations or reforestation to achieve this goal. This paper examines the effects of converting cropland to tree or forest cover in the Central India Highlands (CIH). The paper examines the impact of increased forest cover on groundwater infiltration and recharge, which are essential for sustainable Rabi (winter, non-monsoon) season irrigation and agricultural production. Field measurements of saturated hydraulic conductivity (Kfs) linked to hydrological modeling estimate increased forest cover impact on the CIH hydrology. Kfs tests in 118 sites demonstrate a significant land cover effect, with forest cover having a higher Kfs of 20.2 mm hr−1 than croplands (6.7mm hr−1). The spatial processes in hydrology (SPHY) model simulated forest cover from 2% to 75% and showed that each basin reacts differently, depending on the amount of agriculture under paddy. Paddy agriculture can compensate for low infiltration through increased depression storage, allowing for continuous infiltration and groundwater recharge. Expanding forest cover to 33% in the CIH would reduce groundwater recharge by 7.94 mm (−1%) when converting the average cropland and increase it by 15.38 mm (3%) if reforestation is conducted on non-paddy agriculture. Intermediate forest cover shows however shows potential for increase in net benefits.


2020 ◽  
Vol 81 (1) ◽  
Author(s):  
K. N. Raghavendra ◽  
Kumar Arvind ◽  
G. K. Anushree ◽  
Tony Grace

Abstract Background Butterflies are considered as bio-indicators of a healthy and diversified ecosystem. Endosulfan was sprayed indiscriminately in large plantations of Kasaragod district, Kerala which had caused serious threats to the ecosystem. In this study, we surveyed the butterflies for their abundance and diversity in three differentially endosulfan-affected areas viz., Enmakaje—highly affected area, Periye—moderately affected area, Padanakkad—unaffected area, carried out between the end of the monsoon season and the start of the winter season, lasting approximately 100 days. Seven variables viz., butterfly abundance (N), species richness (S), Simpson’s reciprocal index (D), the Shannon–Wiener index (H′), the exponential of the Shannon–Wiener index (expH′), Pielou’s evenness (J) and species evenness (D/S), related to species diversity were estimated, followed by the one-way ANOVA (F = 25.01, p < 0.001) and the Kruskal-Wallis test (H = 22.59, p < 0.001). Results A population of three different butterfly assemblages comprised of 2300 butterflies which represented 61 species were encountered. Our results showed that Enmakaje displayed significantly lower butterfly diversity and abundance, compared to the other two communities. Conclusion So far, this is the first study concerning the effect of endosulfan on the biodiversity of butterfly in the affected areas of Kasaragod, Kerala, India. This study may present an indirect assessment of the persisting effects of endosulfan in the affected areas, suggesting its long-term effects on the ecosystem.


Sign in / Sign up

Export Citation Format

Share Document