scholarly journals Effect of activated charcoal on different aspects of poultry performance: a review

This paper presents a short review of the effects of activated charcoal (AC) on different aspects of poultry performance. Activated charcoal is a solid, porous, tasteless and black carbonaceous material prepared from a variety of carbon containing materials, including agricultural residue. In powder form it acts as adsorbent for many toxins according to physical and chemical nature of the precursor. Several studies reviewed showed AC, as a non-digestible and cheap substance that may be of benefit to poultry gut health, growth and laying performance, especially in the tropics where microbial degradation of feed is a major threat. Keywords: Activated charcoal, broilers, layers, poultry performance.

2014 ◽  
Vol 71 (5) ◽  
Author(s):  
Muhammad Arif Khan ◽  
Samsudi Sakrani ◽  
Syahida Suhaima ◽  
Yussof Wahab ◽  
Rosnita Muhammad

One dimensional metal oxide semiconductor nanowires of copper (I) oxide (Cu2O), zinc oxide (ZnO), and their heterojunction nanowires possess remarkable physical and chemical properties. ZnO and Cu2O areattractive because the metals are abundant on earth, inexpensive, nontoxic.Moreover, these oxides have useful optical and electrical properties suitable for a wide variety of electrical devices, because their electrical conduction can be predictably controlled by doping. We here restrict the disscussion using a Hot Tube Vacuum Thermal Evaporation. The NWs in these devices will be studied by physical vapor deposition known as vapor-liquid-solid (VLS). Therefore, we explore conventional methods, particularly the VLS of growing ZnO and Cu2O nanowires which are assisted by the catalyst.  In this short review, we report the individual and combined (Cu2O/ZnO) junction nanowires by PVD method.  The main advantages of these composite nanowires are the natural p-n characteristics, the broad light absorption, the high sensitivity to humidity changes, and the fast dynamic response. The combination of all characteristics offered by Cu2O/ZnO nanowires can enable the fabrication of diverse sensing devices, and photovoltaic solar cells.


Author(s):  
Nicolai Denzin ◽  
Frithjof Helmstaedt ◽  
Carolina Probst ◽  
Franz J. Conraths

African swine fever (ASF) is a viral infection of pigs and represents a major threat to animal health and trade. Due to the high tenacity of the causative virus also in carcasses of wild boar, contacts of wild boar with infectious carcasses are regarded an important driver of the so-called habitat cycle. The latter is believed to play a major role in maintaining the present ASF situation in wild boar in Europe. Therefore, search campaigns and timely removal and disposal of carcasses are considered important disease control approaches. If timely disposal is not feasible due to logistic reasons, deterrence of wild boar could be a provisionary option. The performance of seven deterrents (physical and chemical) was tested in a forest near Greifswald, Germany. Carcasses as entities of attraction for wild boar were substituted by luring sites. It could be demonstrated that certain physical (LED-Blinkers, aluminum stripes) and chemical (Wildschwein-Stopp™, Hukinol™) deterrents are capable of reducing significantly the odds of wild boar contacts to one third. It is recommended to carry a choice of the aforementioned, reasonable and easy to apply deterrents, when carcass search campaigns are launched in case of an outbreak of ASF in wild boar.


Author(s):  
Christopher Marlowe A. Caipang

Increasing pace in aquaculture development to meet the growing food requirements of the population has greatly compromised the carrying capacity of the culture environment and has placed the aquacultured animals at heightened risk of getting diseases due to pathogens. At present, chemotherapy is widely used as means to prevent or treat infectious diseases in aquaculture; however, the use of these drugs poses multiple negative impacts on fish and human health, as well as the environment. Recently, research initiatives are focused on the use of plant products and their derivatives as a means of controlling diseases in aquaculture. They are regarded as a promising alternative to the use of chemical treatments for infectious diseases in fish. Plant-derived products or phytogenics have been shown to stimulate appetite and promote weight gain in farmed animals, act as immunostimulants, and possess potent anti-pathogenic properties in fish. Their potency is mediated by the presence of bioactive molecules including alkaloids, terpenoids, saponins, and flavonoids, among others. Moreover, nutritional strategies are geared towards the use of these phytogenics in modulating immune and physiological responses, as well as promoting optimum health and microbial community in the gastrointestinal tract of fish. This review synthesizes the current knowledge on the use of phytogenic feed additives in aquaculture by focusing on how these substances act as modulators of health and bacterial community in the gut of fish.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jianshe Yang

AbstractThis highlight presents a recent technique of “Light Vaccine” for COVID-19 pandemic control. Though this technique has the germicidal advantage to SARS-CoV-2, its shortcomings will limit the wide and in-depth application. We make a perspective of real nano light vaccine, which will play an important role in the prevention and control of COVID-19. Briefly, This flow chart described the MWCNT was fabricated with strong acid and base conditional mixture in order to achieve the p-WCNT (chemical process); then modified with RNA layse and receptor binding domain (RBD) by covalent conjugation and physical absorption to get f-WCNT (functionalization); thereafter, f-WCNT was used in the multi-cell culture system interacting with SARS-CoV-2 to identify the special affinity of f-WCNT to ACE2 labeled alveolar type II cells and the inhibition capacity to SARS-CoV-2. This design, is different from the so called “light vaccine”, has the real function to against SARS-CoV-2 by local cellular temperature-rising through photothermal conversion under the near infrared (NIR) light irradiation, according to the physical and chemical nature of carbon nanotubes, and initiates the immune response consequently.


2012 ◽  
Vol 241-244 ◽  
pp. 204-207
Author(s):  
Nongnaphat Khosavithitkul ◽  
Kenneth J. Haller ◽  
Nares Chuersuwan ◽  
Thananchai Wannasook

One hundred and thirty-seven samples of agricultural residue were taken from the study area of forty subdistricts in twenty districts of ten provines in the Northeastern region of Thailand. The samples were analyzed for major physical and chemical properties and subjected to simulated burning. Rice straw had the highest dry weight and bagasse the lowest. Bagasse had the highest moisture content and the highest carbon content. Results from simulated burning found that sugarcane leaf emitted more CO2 than the other residues. Weight loss on combustion was in the range of 75-92 %, and the simulated burn of agricultural residues showed CO2 emission values at 67% of the IPCC values.


Sign in / Sign up

Export Citation Format

Share Document