scholarly journals Biochemical changes in black oat plants in response to water deficit under different temperatures

2021 ◽  
Vol 42 (5) ◽  
pp. 2685-2702
Author(s):  
Altamara Viviane de Souza Sartori ◽  
◽  
Carolina Maria Gaspar de Oliveira ◽  
Claudemir Zucareli ◽  
◽  
...  

The black oat (Avena strigosa Schreb.) stands out as a forage of great importance in Brazilian agriculture. However, the productivity and quality of this forage can be affected by abiotic factors, such as temperature and water availability, which affect the physiological processes and facilitate the accumulation of free radicals (reactive oxygen species - ROS). Thus, the objective of this study was to understand the biochemical changes in black oat plants subjected to water deficit at different temperatures. Experiments were conducted in a greenhouse in two experimental periods, which presented an average temperature of 20 °C and 24 °C, respectively. Black oat seeds, of the variety IAPAR 61, were sown in pots and the plants were irrigated for 60 days. After which, the pots were covered with plastic bags and the irrigation was suspended. The analyses were carried out in five periods of evaluation - M1: plants before the suspension of irrigation, M2: plants at the first wilting point, M3: three days after plastic removal and irrigation return, M4: four days after M3 and before the second suspension of irrigation, and M5: the second wilting point. The levels of total protein and malondialdehyde (MDA), and the activity of the enzymes catalase (CAT) and ascorbate peroxidase (APX), were analyzed. The experimental design was completely randomized, with six replications, in a factorial scheme of average temperature × water management × periods of evaluation, and the means were compared by Tukey’s test at 5%. In response to water deficiency and temperature increase, black oat plants increased their levels of total soluble proteins, and there was greater lipid peroxidation due to the increase in malondialdehyde content. There was no change in the activity of the enzymes catalase and ascorbate peroxidase under water deficit, and these activities decreased with increasing temperature.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Amina Labdelli ◽  
Ahmed Adda ◽  
Youcef Halis ◽  
Samira Soualem

Yield improvement of durum wheat is considerably limited by the expression of environmental abiotic factors. Water deficits are one of these limiting factors. Plants develop various strategies to tolerate the effects of water deficit. Some of such mechanisms might occur in the root and stem systems. The present study aimed to investigate some anatomical traits contributing to the drought tolerance in the durum wheat. The anatomical variations of the meristem of roots and stems, as a response to water deficit, were evaluated. The results indicated that the enhancement of the intensity of water deficit was accompanied by profound structural changes in the piliferous zone of roots. Water deficit caused a significant decrease in the diameter of the newly formed adventitious roots, which can be explained by a reduction in the thickness of the cortical parenchyma, through the reduction of cell size. This action was usually a contrary effect in the principal adventitious roots. The study also showed that increasing the intensity of water deficit reduced the diameter of vessels in the primary xylem, thereby increasing the hydraulic resistance of roots and lowering the flow of sap.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Jacqueline Santos ◽  
Luiz Edson Oliveira ◽  
Victor Tadeu Coelho ◽  
Guilherme Lopes ◽  
Thaiara Souza ◽  
...  

Rubber tree cultivation is limited in many regions by abiotic factors such as drought. We investigated the biochemical mechanisms responsible for responses to, and recovery from, drought conditions during the establishment phase of four high latex producing rubber tree clones (RRIM600, IAC40, PR255 and GT1). Five-month-old plants were exposed to 32 days of water restriction, followed by 15 days of soil rehydration. Leaf area, as well as their osmolyte accumulations, saccharolytic enzyme activity, and oxidative stress markers, were accompanied. Although clones IAC40 and PR255 responded more precociously to drought conditions, halting leaf expansion before clones GT1 and RRIM600, they demonstrated slow recuperation after reestablishing irrigation. The greater tolerances of clones RRIM600 and GT1 to drought conditions were related to greater vacuolar invertase (VINV) activity in their leaves, which guaranteed more significant accumulations of vacuolar reducing sugars (RS). Similar to RS, glycine betaine accumulations were related to osmoprotection and to reducing oxidative damage (lipidic peroxidation) caused by water deficit conditions. The observed decreases in cytosol neutral invertase (AINV) and cell wall insoluble invertase (CWINV) activities, which resulted in cytosol hexose decreases, may be related to increases in antioxidant enzyme (superoxide dismutase and ascorbate peroxidase) activities in the leaves in response to water deficit conditions. As such, the introduction of specific sugars (RS) and the modulation of key carbon metabolism enzymes, such as VINV, are promising strategies for promoting drought tolerance in rubber tree clones.


Author(s):  
L.Ye. Kozeko ◽  
◽  
E.L. Kordyum ◽  

Mitochondrial heat shock proteins of HSP70 family support protein homeostasis in mitochondria under normal and stress conditions. They provide folding and complex assembly of proteins encoded by mitochondrial genome, as well as import of cytosolic proteins to mitochondria, their folding and protection against aggregation. There are reports about organ-specificity of mitochondrial HSP70 synthesis in plants. However, tissue specificity of their functioning remains incompletely characterized. This problem was studied for mitochondrial AtHSP70-10 in Arabidopsis thaliana seedlings using a transgenic line with uidA signal gene under normal conditions, as well as high temperature and water deficit. Under normal conditions, histochemical GUS-staining revealed the expression of AtHSP70-10 in cotyledon and leaf hydathodes, stipules, central cylinder in root differentiation and mature zones, as well as weak staining in root apex and root-shoot junction zone. RT-PCR analysis of wild-type seedlings exposed to 37°C showed rapid upregulation of AtHSP70-10, which reached the highest level within 2 h. In addition, the gradual development of water deficit for 5 days caused an increase in transcription of this gene, which became more pronounced after 3 days and reached a maximum after 5 days of dehydration. Histochemical analysis showed complete preservation of tissue localization of AtHSP70-10 expression under both abiotic factors. The data obtained indicate the specific functioning of mitochondrial chaperone AtHSP70-10 in certain plant cellular structures.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Massimiliano Trenti ◽  
Silvia Lorenzi ◽  
Pier Luigi Bianchedi ◽  
Daniele Grossi ◽  
Osvaldo Failla ◽  
...  

Abstract Background Understanding the complexity of the vine plant’s response to water deficit represents a major challenge for sustainable winegrowing. Regulation of water use requires a coordinated action between scions and rootstocks on which cultivars are generally grafted to cope with phylloxera infestations. In this regard, a genome-wide association study (GWAS) approach was applied on an ‘ad hoc’ association mapping panel including different Vitis species, in order to dissect the genetic basis of transpiration-related traits and to identify genomic regions of grape rootstocks associated with drought tolerance mechanisms. The panel was genotyped with the GrapeReSeq Illumina 20 K SNP array and SSR markers, and infrared thermography was applied to estimate stomatal conductance values during progressive water deficit. Results In the association panel the level of genetic diversity was substantially lower for SNPs loci (0.32) than for SSR (0.87). GWAS detected 24 significant marker-trait associations along the various stages of drought-stress experiment and 13 candidate genes with a feasible role in drought response were identified. Gene expression analysis proved that three of these genes (VIT_13s0019g03040, VIT_17s0000g08960, VIT_18s0001g15390) were actually induced by drought stress. Genetic variation of VIT_17s0000g08960 coding for a raffinose synthase was further investigated by resequencing the gene of 85 individuals since a SNP located in the region (chr17_10,497,222_C_T) was significantly associated with stomatal conductance. Conclusions Our results represent a step forward towards the dissection of genetic basis that modulate the response to water deprivation in grape rootstocks. The knowledge derived from this study may be useful to exploit genotypic and phenotypic diversity in practical applications and to assist further investigations.


Planta ◽  
2009 ◽  
Vol 231 (3) ◽  
pp. 705-716 ◽  
Author(s):  
Inês Trindade ◽  
Cláudio Capitão ◽  
Tamas Dalmay ◽  
Manuel Pedro Fevereiro ◽  
Dulce Metelo dos Santos

Plant Biology ◽  
2002 ◽  
Vol 4 (6) ◽  
pp. 694-699 ◽  
Author(s):  
M. Labra ◽  
A. Ghiani ◽  
S. Citterio ◽  
S. Sgorbati ◽  
F. Sala ◽  
...  

2012 ◽  
Vol 152 (1) ◽  
pp. 104-118 ◽  
Author(s):  
M. DE A. SILVA ◽  
J. L. JIFON ◽  
J. A. G. DA SILVA ◽  
C. M. DOS SANTOS ◽  
V. SHARMA

SUMMARYThe relationships between physiological variables and sugarcane productivity under water deficit conditions were investigated in field studies during 2005 and 2006 in Weslaco, Texas, USA. A total of 78 genotypes and two commercial varieties were studied, one of which was drought-tolerant (TCP93-4245) and the other drought-sensitive (TCP87-3388). All genotypes were subjected to two irrigation regimes: a control well-watered treatment (wet) and a moderate water-deficit stress (dry) treatment for a period of 90 days. Maximum quantum efficiency of photosystem II (Fv/Fm), estimated chlorophyll content (SPAD index), leaf temperature (LT), leaf relative water content (RWC) and productivity were measured. The productivity of all genotypes was, on average, affected negatively; however, certain genotypes did not suffer significant reduction. Under water deficit, the productivity of the genotypes was positively and significantly correlated with Fv/Fm, SPAD index and RWC, while LT had a negative correlation. These findings suggest that genotypes exhibiting traits of high RWC values, high chlorophyll contents and high photosynthetic radiation use efficiency under low moisture availability should be targeted for selection and variety development in programmes aimed at improving sugarcane for drought prone environments.


Sign in / Sign up

Export Citation Format

Share Document