scholarly journals The seismic performance of energy absorbing dampers in building structures

Author(s):  
D. E. Key

By separating the stiff shear walls of the structural core of a building from the more flexible column/beam/slab structure two independent structures with markedly different dynamic properties are formed. By introducing damping elements between the two, energy is absorbed during earthquakes, giving consider- ably improved response characteristics. A ten storey office structure incorporating dampers in this fashion is studied by time history analysis, using five simulated earthquakes. Dampers are provided at each floor level. The analysis treats the damping as hysteretic, based on the type described by Kelly (1972). Significant reductions in structural response are achieved by this means.

2011 ◽  
Vol 368-373 ◽  
pp. 104-107
Author(s):  
Long Xing Yin ◽  
Guo Liang Bai ◽  
Hong Xing Li ◽  
Xiao Wen Li

In order to solve the problem that traditional main building for large thermal power plant cannot satisfy seismic requirements in high-intensity area, we put forward SRC frame-RC few shear walls structure system to conduct experimental study and theoretical analysis. Based on pseudo-dynamic test of 1/7 scale model and elastic-plastic time history analysis, the deformation property and capacity for dissipation of energy, as well as the failure mechanism are analyzed. The results show that the new structure system has well seismic performance, it can satisfy seismic fortification goals in 8 intensity Ⅱ zones, but the weak positions should be given enough attentions.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
David Kim ◽  
Eun Hee Sung ◽  
Kwan-Soon Park ◽  
Jaegyun Park

This paper presents the evaluation of seismic performance and cost-effectiveness of a multiple slim-type damper system developed for the vibration control of earthquake excited buildings. The multiple slim-type damper (MSD) that consists of several small slim-type dampers and linkage units can control damping capacity easily by changing the number of small dampers. To evaluate the performance of the MSD, dynamic loading tests are performed with three slim-type dampers manufactured at a real scale. Numerical simulations are also carried out by nonlinear time history analysis with a ten-story earthquake excited building structure. The seismic performance and cost-effectiveness of the MSD system are investigated according to the various installation configurations of the MSD system. From the results of numerical simulation and cost-effectiveness evaluation, it is shown that combinations of the MSD systems can effectively improve the seismic performance of earthquake excited building structures.


Bauingenieur ◽  
2020 ◽  
Vol 95 (11) ◽  
pp. S 12-S 21
Author(s):  
Rudolf Heuer ◽  
Andreas Kolbisch ◽  
Ali Khazei

Abstract The composite wall with encased steel braces (ESB wall) is a novel type of steel–concrete composite wall that consists of a steel braced frame embedded in reinforced concrete. This arrangement is supposed to enhance the seismic performance of the wall, as the steel columns encased in the boundary elements can increase the flexural strength of the wall and the steel braces encased in the web can increase the shear strength. ESB walls have seen use in super tall building structures constructed in regions of high seismicity. The ESB walls are commonly used on stories where the shear force demand is very high. Currently, no design guidelines exist for the design of ESB Walls in the Eurocode. More research is required before a distinct set of guidelines can be prescribed for the design of ESB Walls. The present research will investigate behavior of composite walls with encased steel braces (ESB walls). Time history analysis will be performed to examine the shear strength and stiffness of the ESB walls. In this study, two frames with three floors and five floors will be modeled in ABAQUS software. Then the X- shaped braces and inverted V brace is added to frames. Later, reinforced concrete shear wall will be added to braced frames, so the steel braces encased in the reinforced concrete shear wall. Time history analysis, on the braced frames will be done Compare and note with each other. The results of the study are in good agreement with those of previous studies. However, none of these studies examined the effect of using V- and X-shaped struts and shear walls simultaneously, nor did they examine which struts reinforce the structures more strongly against earthquake vibrations. This has led the study to examine the effect of these reinforcements under various earthquakes. In future studies, reinforced concrete structures can also be used in addition to steel structures, and the results can be compared. In addition, these braces can also be used in other parts of the building. To meet this objective, one can use the very important data provided in this thesis, and ultimately better and more accurate results can be extracted using this approach. The main aim of this thesis is to study the effect of increasing the number of floors on how to extend the stress on the building structure. To this end, the number of floors increased from three to five. Therefore, it can be concluded that an increase in the number of floors also more than 5 storey causes stress values, but these modes are quite consistent with the three- and five-storey buildings.


2013 ◽  
Vol 712-715 ◽  
pp. 822-826 ◽  
Author(s):  
Yong Gang Kang ◽  
Yu Zhen Chang ◽  
Ting Xu ◽  
Ying Kang

Steel-concrete composite ribbed shell is a kind of shell structure based on the thin concrete shell, which has the advantages of two different materials, at the same time with steel nets shell and thin concrete shell structure. In this paper, the seismic performance of steel concrete composite ribbed shell is analyzed, in which the elastoplastic time-history analysis method is used to analyze internal force and deformation. Furthermore a parameter analysis is made to discuss the seismic performance, which considering different high-span ratio, section dimension, boundary conditions and structure division frequency. The influence on structure seismic performance and some structure dynamic response characteristics are obtained, which can be resulted for structural seismic design and referenced in steel-concrete thin shell design specification modification.


2013 ◽  
Vol 756-759 ◽  
pp. 4482-4486
Author(s):  
Chun Gan ◽  
Xue Song Luo

In recent years, frequent earthquakes have caused great casualties and economic losses in China. And in the earthquake, damage of buildings and the collapse is the main reason causing casualties. Therefore, in the design of constructional engineering, a seismicity of architectural structure is the pressing task at issue. Through time history analysis method, this paper analyzes the time history of building structural response and then it predicts the peak response of mode by response spectrum analysis. Based on this, this paper constructs a numerical simulation model for the architecture by using finite element analysis software SATWE. At the same time, this paper also calculates the structure seismic so as to determine the design of each function structure in architectural engineering design and then provides reference for the realization of earthquake-resistant building.


2016 ◽  
Vol 845 ◽  
pp. 274-282
Author(s):  
Fauzan ◽  
Febrin Anas Ismail ◽  
Zev Al Jauhari

Keywords: Earthquake, Internal Forces, Displacement, Response Spectrum Analysis, Time History Analysis, PoundingAbstract. Teaching Hospital is an educational facilitiy for students in the Faculty of Medicine and also as a health services for the general public. The hospital building must be built in accordance with earthquake-safe building standards, so that buildings are not damaged in an earthquake. Andalas University Hospital was built at Padang in 2014 which was designed using Indonesian Seismic Code SNI 03-1726-2002 with quakes zone 6. Since 2012, a new Seismic Code, SNI 1726-2012, was issued and all the buildings should be designed by using the new code. Therefore, the authors are interested in analyzing the structural response of the hospital building by using new seismic code SNI 1726-2012. The results, then, were compared with the responses of the structure which calculated by using SNI 03-1726-2002.The results of analysis show that the structural responses in the internal forces and displacement by using SNI 1726-2012 was higher than those using SNI 03-1726-2002. In this study, an analysis of potential Pounding was also conducted by using dynamic analysis Time History method. The analytical result shows that there is no pounding between adjacent buildings at Andalas University Hospital Buildings.


Author(s):  
Vinod K. Sadashiva ◽  
Gregory A. MacRae ◽  
Bruce L. Deam

Structures may be irregular due to non-uniform distributions of mass, stiffness, strength or due to their structural form. For regular structures, simple analysis techniques such as the Equivalent Static Method, have been calibrated against advanced analysis methods, such as the Inelastic Dynamic Time-History Analysis. Most worldwide codes allow simple analysis techniques to be used only for structures which satisfy regularity limits. Currently, such limits are based on engineering judgement and lack proper calibration. This paper describes a simple and efficient method for quantifying irregularity limits. The method is illustrated on 3, 5, 9 and 15 storey models of shear-type structures, assumed to be located in Wellington, Christchurch and Auckland. They were designed in accordance with the Equivalent Static Method of NZS 1170.5. Regular structures were defined to have constant mass at every floor level and were either designed to produce constant interstorey drift ratio at all the floors simultaneously or to have a uniform stiffness distribution over their height. Design structural ductility factors of 1, 2, 4 and 6, and target (design) interstorey drift ratios ranging between 0.5% and 3% were used in this study. Inelastic dynamic time-history analysis was carried out by subjecting these structures to a suite of code design level earthquake records. Irregular structures were created with floor masses of magnitude 1.5, 2.5, 3.5 and 5 times the regular floor mass. These increased masses were considered separately at the first floor level, mid-height and at the roof. The irregular structures were designed for the same drifts as the regular structures. The effect of increased mass at the top or bottom of the structure tended to increase the median peak drift demands compared to regular structures for the record suite considered. When the increased mass was present at the mid-height, the structures generally tended to produce lesser drift demands than the corresponding regular structures. A simple equation was developed to estimate the increase in interstorey drift due to mass irregularity. This can be used to set irregularity limits.


2017 ◽  
Vol 11 (4) ◽  
pp. 70 ◽  
Author(s):  
Ali Vatanshenas

Earthquake is considered as the main destructive and collapsing factor of structures in near-fault zones, so design new structures and retrofitting existing structures in order to decrease structural responses is an unavoidable matter. One of the structural response reduction methods is using of TMDs. In this paper, a two-dimensional 10-storey steel structure as three structural models without PTMD, with a PTMD at the highest level and ten PTMDs with different characteristics at all levels with the Modal-FNA time-history analysis method under acceleration records with directivity and without directivity of Parkfield 2004 earthquake at the angle of the maximum acceleration response in the first mode period of structure after rotating the acceleration records at the station with directivity and its corresponding angle at the station without directivity were compared to each other in terms of the roof displacement, the input energy and the base shear. It was observed that the structure behavior in the case of using only one PTMD is better, but in the case where ten PTMDs with relative smaller masses were used compared to the case where only one PTMD was used is also with roof displacement reduction.


2014 ◽  
Vol 2014 ◽  
pp. 1-18
Author(s):  
G. Muthukumar ◽  
Manoj Kumar

Shear walls have been conferred as a major lateral load resisting element in a building in any seismic prone zone. It is essential to determine behavior of shear wall in the preelastic and postelastic stage. Shear walls may be provided with openings due to functional requirement of the building. The size and location of opening may play a significant role in the response of shear walls. Though it is a well known fact that size of openings affects the structural response of shear walls significantly, there is no clear consensus on the behavior of shear walls under different opening locations. The present study aims to study the dynamic behavior of shear walls under various opening locations using nonlinear finite element analysis using degenerated shell element with assumed strain approach. Only material nonlinearity has been considered using plasticity approach. A five-parameter Willam-Warnke failure criterion is considered to define the yielding/crushing of the concrete with tensile cutoff. The time history responses have been plotted for all opening cases with and without ductile detailing. The analysis has been done for different damping ratios. It has been observed that the large number of small openings resulted in better displacement response.


2012 ◽  
Vol 594-597 ◽  
pp. 860-868
Author(s):  
Kai Hu ◽  
Ge Qu

The most common analysis methods of complex high-rise buildings are the response spectrum analysis, elastic time history analysis, pushover analysis and etc. Meanwhile, for the analysis of those high-rises whose height is higher than 200 meters, period is longer than 4 seconds, the dynamic nonlinear analysis would be more accurate. In this paper, the dynamic nonlinear analysis was executed in use of the Perform-3D program. The results show that the maximum top displacement can meet the national codes; most tie beams and the frame beams of the upper structure yielded in the IO~IS stage and parts reached the CP stage; both the laminated columns and the frame columns had a good performance on the shear behavior; and it is also proposed to strengthen the reinforcement at the reducted storeys. By all these above, it can be judged that the structure reached the codes’ seismic performance objectives.


Sign in / Sign up

Export Citation Format

Share Document