Forecasting of oil and gas deposits by a complex of geophysical methods on the southern side of the Fergana Depression

Author(s):  
A.G. Novruzov ◽  
◽  
V.G. Gadirov ◽  
A.Kh. Urmonov ◽  
◽  
...  
2021 ◽  
Vol 43 (3) ◽  
pp. 123-134
Author(s):  
T. R. Akhmedov ◽  
T. Kh. Niyazov

The article is devoted to the elucidation of the nature of the wave field recorded below the supporting-dominant seismic horizon «P» in the Middle Kura depression of Azerbaijan. A brief overview of the work carried out here is given; it is indicated that some geologists and geophysicists of our country, in our opinion, mistakenly assume that the observed wave field below the specified horizon is formed mainly by multiple reflections. Since the introduction of the common depth point method into the practice of seismic exploration, individual areas of the Middle Kura depression in Azerbaijan, including the Yevlakh-Agjabedi trough, have been repeatedly studied with varying degrees of frequency tracking. On the basis of this, a fairly large number of promising structures have been identified and mapped. But the structure of the Mesozoic, in particular the deposits of the Upper Cretaceous, still remains insufficiently studied. The study of the geological structure of the Mesozoic sediments, which are considered promising in terms of oil and gas content, is an urgent geological task; exploration work was carried out in the studied areas of the Middle Kura depression using a complex of geophysical methods at the modern technical and methodological level and new results were obtained. The constructed seismic sections show a dynamically pronounced and well-traceable seismic horizon corresponding to the Mesozoic surface and located deeper than it, relatively weak, short, discontinuous reflective boundaries that characterize the structure within the Mesozoic deposits. The studies carried out on the basis of modeling and velocity analysis made it possible to prove that the wave field in the time interval corresponding to the Mesozoic deposits owes its origin to intermittent single reflections from volcanic-carbonate deposits of the Upper Cretaceous age.


Geophysics ◽  
1953 ◽  
Vol 18 (3) ◽  
pp. 510-524 ◽  
Author(s):  
Henry C. Cortes

Histories or reviews covering the period from 1922, the first year of petroleum geophysics in the United States, to 1940 were ably presented by Eckhardt, Macelwane and Weatherby at the Society of Exploration Geophysicists’ Annual Meeting of the latter year. This paper deals mainly with advances in geophysics since 1940. Marked progress has been made in the amount of geophysical activity, in the number of new oil fields discovered per year based wholly or partially on geophysics, in geophysical techniques, and in education. Improvements in instrumentation, field operational procedures, and interpretation methods have steadily increased the usefulness of the three major methods—seismic, gravity, and magnetic. The development of the aerial magnetometer, especially, and the underwater gravimeter represent notable achievements. These developments have made possible the extension of geophysical activity offshore, and in many other areas previously considered inaccessible. Advances have also been made in logging, particularly in the radioactivity type, geochemistry and electrical prospecting. Research, both fundamental and applied, is being conducted on a greater scale now than in 1940 or prior thereto. Increased geological‐geophysical coordination has led to better appreciation and utilization of the geophysical methods and has resulted in the discovery of important oil and gas reserves. Novel or more direct oil finding methods may possibly be discovered or perfected. It is more probable, however, that the future of exploration geophysics will be primarily in the continual refinement of the present known methods. Advances in exploration geophysics and geology, along with teamwork, should insure adequate production and reserves within the United States for a long period. This is predicated on our nation having competitive free enterprise, which has been responsible for the leadership of this country in oil finding, producing, transporting and refining techniques.


2018 ◽  
Vol 6 (2) ◽  
pp. T431-T447 ◽  
Author(s):  
Xiaoming Sun ◽  
Siyuan Cao ◽  
Xiao Pan ◽  
Xiangyang Hou ◽  
Hui Gao ◽  
...  

Volcanic reservoirs have been overlooked for hydrocarbon exploration for a long time. Carboniferous volcanic rocks of the Zhongguai paleouplift contain proven reserves of [Formula: see text]. We have investigated the volcanic reservoirs integrating cores, well, and seismic data, and the proposed volcanic reservoir distribution is controlled by the weathering function, fractures, and lithology. The weathering process makes the originally tight igneous rocks become good-quality reservoirs, and fractures play an important role in connecting different types of pores and act as reservoir space. Isolated and ineffective pores become effective ones due to connection among fractures. Only volcanic breccia can be good-quality reservoirs without any weathering function. The nonlinear chaos inversion controlled by weathered layers shows that the good-quality reservoirs are distributed in the top of the weathering crust and the structural high. Furthermore, fluid-detection attributes and background information prove that oil and gas are distributed along the paleostructural high. The objectives of this study were to (1) describe the characteristics of volcanic reservoirs and determine the controlled rules for reservoir distribution, (2) characterize the distribution of reservoirs and hydrocarbon, and (3) propose an effective workflow for hydrocarbon exploration in volcanic rocks combining geologic and geophysical methods.


2015 ◽  
Vol 2 (1) ◽  
pp. 52-57
Author(s):  
Payam Salimi

Geophysical methods widely used in oil and gas exploration. Modeling of gravity data is used extensively to illustrate the geometry and interface between the sediments and bedrock. Which can help the salt dome, anticline folds, dome-shaped uplift of the continental platform and reef masses to be identified. There are various methods to illustrate the bedrock topography, and we will describe one of these methods in present paper. Using the upward continuation, we extract the residual gravity anomaly which in fact shows the local effect of bedrock gravity on the observed gravity. Then, according to the Oldenburg - Parker method, the residual gravity data are inversed and finally the 3D geometry the bedrock is illustrated. It should be noted that some software's like Surfer and Excel are used in this research but the program main code is written using Matlab programming.


2021 ◽  
Vol 2 (3) ◽  
pp. 55-60
Author(s):  
Ekaterina E. Khogoeva ◽  
Evgeny A. Khogoev

This study is devoted to an analysis of microseisms registered on gas-condensate field area. Presence of seismic emission effect on a part of the area is demonstrated. A microseismic anomaly is outlined in NW part of the area and proves correct by 3 seismic CDP profiles and interpreted as a reservoir. The results of the special processing was compared to the results of a set of other geophysical methods. Correlation between the found anomaly and an anomaly found with aerogamma-specrtometry is shown. The results can be used in an integrated interpretation of geophysical data for oil and gas reservoirs of both structural as nonstructural types.


GEODYNAMICS ◽  
2011 ◽  
Vol 2(11)2011 (2(11)) ◽  
pp. 158-160
Author(s):  
S. P. Levashov ◽  
◽  
M. A. Yakymchuk ◽  
I. M. Korchahin ◽  
◽  
...  

The mobile geophysical technology include a special method of the remote sensing data processing and interpreting, aerial mapping method of the forming short-pulsed electromagnetic field (FSPEF), method of vertical electric-resonance sounding (VERS). Inclusion of such technologies in traditional complex of exploration geological-geophysical methods will promote both minimization of the financial expenses on the oil-and-gas exploration problems solving, and essential reduction of time for their practical realization.


Author(s):  
Boris A. Golovin ◽  
◽  
Konstantin B. Golovin ◽  
Marina V. Kalinnikova ◽  
Sergey A. Rudnev ◽  
...  

In the established practice of geological exploration for oil and gas conclusions about the facies belonging of the rocks of oil and gas basins and individual exploration areas were made mainly on the basis of the study of core material. Recently for this purpose the results of seismic exploration and well logging have been used. Geophysical methods despite their obvious progress are indirect and intermittent core sampling and incomplete coring make facies analysis difficult. Тhe study of cuttings during the well logging process makes it possible to fill this gap through direct continuous observations along the well section. The use of the whole complex of geophysical methods allows one to mutually compensate for the limitations and disadvantages of each of them and more fully and reliably assess the genetic characteristics and reservoir potential of productive deposits. Sequential accumulation, comparison and analysis of heterogeneous geophysical data make it possible to continuously refine apriori facies models and forecast oil and gas content which ultimately allows to optimize the directions and volumes of drilling.


1989 ◽  
Vol 20 (2) ◽  
pp. 39 ◽  
Author(s):  
V.S. Surkov ◽  
V.I. Lotyshev

A sparse network of regional profiles developed in Siberia using deep seismic sounding methods (DSS) does not allow a valid three dimensional model of Siberian deep crustal structure to be constructed. To create such a model, interpretation methods of available geophysical and geological data are suggested. These are based on modelling of geological objects using potential fields. Information on DSS key profiles is considered to be key data.The results of such interpretation are shown in the crustal thickness map and in that of crystalline basement, as well as on a deep geological-geophysical profile across the West Siberian Plate and Siberian Platform. The crustal thickness in Siberia varies from 30 to 55 km. It is on average 4?6 km thicker on the Siberian Platform than the West Siberian Plate. The least crustal thickness of 30 to 33 km appears to be beneath regions with maximum thickness of Mesozoic deposits. Modern and Early Mesozoic rift zones are characterized by decreased crustal thickness of 36?39 km. Ancient shields of the Siberian Platform and adjacent folded mountain units are up to 45?55 km thick.The geometry of the top of crystalline basement in the young West Siberian Plate is sharply different from that of the ancient Siberian Platform. Within the West Siberian Plate structural features with 5 to 11 km of relief dominate, while on the Siberian Platform the structural relief varies from 2?3 to 14 km.The peculiarities of deep crustal structure have greatly influenced the formation and distribution of sedimentary units. The constructed section shows the depths and thicknesses of the Riphean, Vendian?Silurian, Devonian?Middle Triassic and Mesozoic?Cenozoic megacomplexes, most promising for oil and gas in Siberia. Data obtained on the deep structure of Siberian Platform regions are thus of great practical importance. They can be used to predict areas of petroleum potential and determine optimal trends of further oil and gas exploration by geophysical methods.


Geophysics ◽  
1953 ◽  
Vol 18 (2) ◽  
pp. 340-359 ◽  
Author(s):  
Robert B. Baum

The discovery of the Pollard oil field in southern Alabama early in 1952 sparked a campaign of leasing and exploration which spread quickly into Georgia and Florida. Three fields in southwestern Alabama and one in southern Florida account for all the oil production in the three states. Some aspects of the general geology and geophysics of the area, illustrated with maps, cross sections, and correlation charts, suggest the presence of geologic conditions favorable for the possible trapping and accumulation of oil and gas. Early seismograph exploration in much of the area was not effective, but in recent months the tempo of seismic activity has been accelerating, and improvements in instrumental and interpretive techniques are being achieved through current experimental work. The use of the various geophysical methods contributed to the discovery of the four oil fields located in the area. The structural traps indicated by the contour maps of the four fields are of the type sought by the reflection seismic method. Examples of representative reflection records indicate the presence of usable and correlatable seismic events. A seismic cross section prepared from data of this type shows the fault zone associated with the Pollard field. The existence of favorable geologic conditions in the southeastern states and the recent oil field successes at Pollard and South Carlton indicate the continuing of active development and exploration throughout the area.


Sign in / Sign up

Export Citation Format

Share Document