scholarly journals Research of the resistance process of casing column filters at their contact with rock

Author(s):  
G. G. Gilaev ◽  
◽  
M. Ya. Khabibullin ◽  
R. N. Bakhtizin ◽  
◽  
...  

The analysis of theoretical solutions and experimental data given in numerous literatures to justify the choice of the ratio of the size of gravel in relation to the size of formation sand showed that with the development of experimental methods and the accumulation of laboratory and field data, this ratio tends to decrease. When installing filters in an open hole, pressure losses at the interface between gravel and the formation play a significant role, and it should be noted that the greatest productivity and efficiency of the filter in an open hole is achieved when there is a packing around it, which can be created by crushing the sandy massif of the formation by cyclical changes debit. When choosing a filter design, along with the ability to provide them with a reliable hydraulic connection in the reservoir-filter system, the main task is also solved - to prevent sand flow into the well. The study of the conditions for the removal of sand particles through the flow sections in perforated, mesh and slotted filters during their operation both in homogeneous and in sands of different size, made it possible to recommend empirical dependences for determining the size of the holes. Keywords: porous medium; coarse fraction; sand; particle; well.

2011 ◽  
Vol 462-463 ◽  
pp. 1038-1043 ◽  
Author(s):  
Xamxinur Abdikerem ◽  
Mamtimin Gheni ◽  
Abdurahman Ablimit ◽  
A Fang Jin

Wind caused the much sediment fluxes leading to both erosion and deposits in the sandy desertification area, and the much kind of beautiful sandy desert morphologies are formed. This is really crucial to the development of the dynamic behaviour of aeolian transport of sand particles. The sand desert morphologies are representing significant information archives for understanding the desertification problem. Dynamics and numerical modeling provides an essential tool for studying the aeolian transport of sand particle and morphology of sand desert such as ripple and dune. In this study, the mathematical models based on the dynamics are analyzed by considering the several keys as saltation, creep, suspension, avalanche and its threshold condition etc. for sand morphology forming processes. Then due to sand flow field real characteristics, the establishing process of stream flow field are analyzed, and the implication relationships as well as the coupling process between uniform stream flow field and the sand flow field are analyzed. Finally, the sand flow field models is discretized, and different kinds of sandy desert morphology are simulated by considering the sand particle size and mass in fixed, semi-fixed and free sand flow field area.


Author(s):  
Ahmed Mohamed Nossair ◽  
Peter Rodgers ◽  
Afshin Goharzadeh

The understanding of sand particle transport by fluids in pipelines is of importance for the drilling of horizontal and inclined hydrocarbon production wells, topside process facilities, infield pipelines, and trunk lines. Previous studies on hydraulic conveying of sand particles in pipelines have made significant contributions to the understanding of multiphase flow patterns, pressure drop and particle transport rate in horizontal pipelines. However, due to the complexity of the flow structure resulting from liquid-sand interactions, the mechanisms responsible for bed-load transport flow for hydraulic conveying of sand particles have not been extensively studied in inclined pipelines. This paper presents an experimental investigation of hydraulic conveying of sand particles resulting from a stationary flat bed in both horizontal and +3.6 degree upward inclined pipelines. The characteristics of sand transportation by saltation from an initial sand bed are experimentally visualized using a transparent Plexiglas pipeline and high-speed digital photography. The dune formation process is assessed as a function of pipeline orientation. Based on the visualized dune morphology, pipeline inclination is found to have a significant influence on hydraulic conveying of sand dune dynamics (i.e., dune velocity), as well as sand dune geometry (i.e., dune pitch and characteristic dune angles).


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. W31-W45 ◽  
Author(s):  
Necati Gülünay

The old technology [Formula: see text]-[Formula: see text] deconvolution stands for [Formula: see text]-[Formula: see text] domain prediction filtering. Early versions of it are known to create signal leakage during their application. There have been recent papers in geophysical publications comparing [Formula: see text]-[Formula: see text] deconvolution results with the new technologies being proposed. These comparisons will be most effective if the best existing [Formula: see text]-[Formula: see text] deconvolution algorithms are used. This paper describes common [Formula: see text]-[Formula: see text] deconvolution algorithms and studies signal leakage occurring during their application on simple models, which will hopefully provide a benchmark for the readers in choosing [Formula: see text]-[Formula: see text] algorithms for comparison. The [Formula: see text]-[Formula: see text] deconvolution algorithms can be classified by their use of data which lead to transient or transient-free matrices and hence windowed or nonwindowed autocorrelations, respectively. They can also be classified by the direction they are predicting: forward design and apply; forward design and apply followed by backward design and apply; forward design and apply followed by application of a conjugated forward filter in the backward direction; and simultaneously forward and backward design and apply, which is known as noncausal filter design. All of the algorithm types mentioned above are tested, and the results of their analysis are provided in this paper on noise free and noisy synthetic data sets: a single dipping event, a single dipping event with a simple amplitude variation with offset, and three dipping events. Finally, the results of applying the selected algorithms on field data are provided.


Author(s):  
Amir Mansouri ◽  
Hadi Arabnejad Khanouki ◽  
Siamack A. Shirazi ◽  
Brenton S. McLaury

Solid particle laden flows are very common in many industries including oil and gas and mining. Repetitive impacts of the solid particles entrained in fluid flow can cause erosion damage in industrial equipment. Among the numerous factors which are known to affect the solid particle erosion rate, the particle impact speed and angle are the most important. It is widely accepted that the erosion rate of material is dependent on the particle speed by a power law Vn, where typically n = 2–3. Therefore, accurate measurements of abrasive particle impact speed and angle are very important in solid particle erosion modeling. In this study, utilizing a Particle Image Velocimetry (PIV) system, particle impact conditions were measured in a direct impinging jet geometry. The measurements were conducted with two different test rigs, for both air-sand and liquid-sand flows. In air-sand testing, two types of solid particles, glass beads and sharp sand particles, were used. The measurements in air-sand tests were carried out using particles with various sizes (75, 150, and 500 μm). Also, submerged testing measurements were performed with 300 μm sand particles. In the test conditions, the Stokes number was relatively high (St = 3000 for air/sand flow, St = 27 for water/sand flow), and abrasive particles were not closely following the fluid streamlines. Therefore, a Particle Tracking Velocimetry (PTV) technique was employed to measure the particle impact speed and its angle with the target surface very near the impact. Furthermore, Computational Fluid Dynamics (CFD) simulations were performed, and the CFD results were compared with the experimental data. It was found that the CFD results are in very good agreement with experimental data.


2020 ◽  
Vol 26 (2) ◽  
pp. 57-69
Author(s):  
Hassan Abdul Ameer ◽  
Hassan Abdul Hadi

    In this work, calculation of pressure losses in circulating system for two drilling muds is evaluated in Noor oil field. Two types of drilling muds that were used for drilling section 12 1/4" and 8 3/4" which are Salt saturated mud and Ferro Chrome Lignosulfonate-Chrome Lignite mud. These calculations are based on field data that were gathered from the drilling site of well Noor-15, which are included, rheological data, flow data and specification of drill string. Based on the obtained results, the best rheological model that fit their data is the Herschel-Bulkley model according to correlation coefficient value for their two drilling mud. Also, the difference between the calculated pressure loss by Herschel-Bulkley model and standpipe pressure value are very convergence.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5631
Author(s):  
Lu Wang ◽  
Shuhua Liu

This paper presents an efficient method of microbial-induced calcite precipitation (MICP) for cementation of sand particles. First, the influence of initial pH value of the culture medium on the growth of bacteria was discussed. Then, the compressive strength and calcium carbonate content of cemented sand columns with different sand particle sizes were measured to indicate the cementation effectiveness. The microstructure of cemented sand columns as well as the mineral composition and distribution of calcium carbonate were characterised by means of scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) and X-ray diffraction (XRD). The results showed that the urease-producing bacteria S. pasteurii can be cultured at the initial pH values of 7–10, while a higher pH (e.g., 11) would hinder its growth and decrease its urease activity. The injection method of MICP with high standing time can cement sand columns effectively. Small average sand particle size of sand columns and high injection cycles can facilitate the gain of compressive strength, while calcium carbonate content of sand column higher than 8% can promote the increase of compressive strength. XRD results indicate that the fine grains generated on the surface of sand particles are calcite. The distribution of calcite on sand particles’ surface is broad and uniform. First, calcite was precipitated on the surface of sand particles, and then a precipitation layer was formed, which would connect sand particles through its high enough thickness and contribute to the development of compressive strength of the whole sand column.


Author(s):  
A. Ghenaiet ◽  
S. C. Tan

Helicopters operating in a desert region are often subjected to the environmental effects of sand ingestion that can erode gas turbine engines and block the cooling passages. Traditional method of removing sand particles include barrier filters that employed vortex tube and impact filter designs, and inertial particle separator (IPS). Barrier filters are normally quite heavy and require constant servicing or replacement. IPS relies on contoured surfaces to direct particulates to a scavenge area through the actions of the viscous forces and bounce characteristics of the sand particles. The geometrical design of an IPS plays an important role in determining the sand separation efficiency. This paper presents a numerical study of the RTM322 IPS, which includes the effects of changing the hub, splitter and scavenge duct geometries on the sand separation efficiency. The flow field calculation in the IPS was performed with the commercial CFD software package called TASCflow. The particle trajectories were computed using an in-house developed trajectory code, which was based on the lagrangian method. The effects of flow turbulence on the trajectory were simulated using the eddy lifetime concept. Several design geometrical modifications were investigated such as the shape of the hub and splitter and their relative locations. Particle trajectories and separation efficiency were performed for a range of sand particle sizes, inlet mass flow rates and scavenge ratios.


2011 ◽  
Vol 462-463 ◽  
pp. 1032-1037 ◽  
Author(s):  
Abdurahman Ablimit ◽  
Mamtimin Gheni ◽  
Zhong Hua Xu ◽  
Mamatjan Tursun ◽  
Xamxinur Abdikerem

In this paper, the sand break into highway problem in desert, which is caused by the sand flow blown by wind, is studied. The mathematical models are introduced by considering the fixed, semi-fixed and free sand desert fields based on the fluid dynamics and the sand particle dynamics. Different kinds of numerical models are made by changing the desert highway height, wind flow direction and its uniformity. The weak coupling method is used due to spatial relationships between air flow field and the sand flow field. Finally, by coupling the airflow field and sand flow field with desert highway, the numerical simulations of sand forming process on desert highway are conducted. The numerical results shown, that the wind blown sand breaks into highway easier when wind direction perpendicular highway and if the highway height higher than the range size of the sand surface the wind blown sand break into highway is more difficult.


2004 ◽  
Vol 41 (4) ◽  
pp. 698-712 ◽  
Author(s):  
Tarek Abichou ◽  
Craig H Benson ◽  
Tuncer B Edil

A network formulation was used to model the hydraulic conductivity of sand–bentonite mixtures (SBMs) as a function of bentonite content. The sand particles were assumed to be spheres, and their arrangement was defined using a discrete element model simulating sand particle interactions. Pores between the spheres were approximated as a network of straight capillary tubes. The space defined by the spheres was divided into a collection of neighboring tetrahedrons, and the geometry of the tetrahedrons was used to define tube diameters and lengths in the network. Hydraulic heads throughout the network were computed by solving a system of equations describing flow through the tubes. Hydraulic conductivity of the network was calculated as the rate of flow per unit area for a given network of tubes driven by a one-dimensional hydraulic gradient. Bentonite was introduced into the network in several schemes to simulate SBMs. SBMs prepared with powdered bentonite were modeled as a packing of sand, where the sand particles are coated with bentonite (grain coating model and pipe blocking model), whereas SBMs prepared with granular bentonite were modeled as a packing of sand with bentonite occupying pores between the sand particles (junction blocking model). The relationship between hydraulic conductivity and bentonite content obtained from the grain coating model was similar to that measured on sand – powdered bentonite mixtures. A comparable relationship was also obtained for hydraulic conductivities predicted with the junction blocking model using a size-based filling approach and hydraulic conductivities measured on sand – granular bentonite mixtures.Key words: sand–bentonite mixtures, network models, hydraulic conductivity, degree of bentonation, bentonite distribution.


2021 ◽  
Vol 25 (6 Part A) ◽  
pp. 4217-4224
Author(s):  
Sha Sha ◽  
Xiantang Zhang ◽  
Zhiang Wang ◽  
Han Liu ◽  
Huiyao Zhang

Fluent simulates the water-sand flow around a cylinder. Monitoring lines are set up at different positions in the cylindrical surface and the very near wake area behind the cylinder, in order to explore the speed difference of fluid and sand in the water-sand two-phase flow in the boundary-layer and the very near wake area. The results show that the sand particles stay for the longest time on the back of the cylindrical surface and in the very near wake area, and a small part of the sand particles are sticky on the back of the cylindrical pier. When the height of the cylinder is z/D ? (1.57, 3.14), the turbulent flow on the cylindrical surface is fully developed. The dynamic pressure of the flow field in the very near wake area be-hind the cylinder fluctuates greatly, and the water-sand flow is extremely unstable. At the monitoring position of the cylinder, there is a sudden decrease in the velocity of the fluid, while the velocity of the sand particles changes little and remains finally at about -0.02 m/s. The water-sand flow field near the wall changes drastically, but the velocity change of sand particles has obvious hysteresis compared with fluid. When leaving the near-wall position but still in the cylindrical wake area (x/D ? 3), the changes in the water-sand flow field are more intense and the velocity of the sand particles is still slightly larger than the fluid velocity.


Sign in / Sign up

Export Citation Format

Share Document