scholarly journals Compact MIMO Antenna with Wide-Band Isolation and Ground Mode Resonance for Smart Glasses

Author(s):  
Jongin Ryu ◽  
Hyeongdong Kim
Keyword(s):  
2017 ◽  
Vol 9 (8) ◽  
pp. 1741-1748 ◽  
Author(s):  
Mahdi Jalali ◽  
Mohammad Naser-Moghadasi ◽  
Ramezan Ali Sadeghzadeh

Wide-band circularly polarized multi-input multi-output (MIMO) antenna array with a 2 × 4 feed network was proposed for C-band application. Different unique techniques were utilized in the proposed array to enhance the antenna characteristics, such as gain, 3 dB axial ratio bandwidth (ARBW), impedance tuning, and ruinous mutual coupling effects. A miniaturized dual-feed Tai chi-shaped antenna element with a pair of feeding points and a pair of eyebrow-shaped strips was presented for enhancing circular polarization (CP) purity and impedance matching. For a better improvement of CP features, a 2*4 MIMO sequentially rotated (MIMO-SR) feed network was used to achieve broader 3 dB ARBW. Besides, the MIMO feature of the feed network could control the left- and right-handed CP, respectively. Ultimately, specific forms of slot and slit structures were applied onto the top layer of MIMO feed network that provided a high isolation between the radiating elements and array network. Furthermore, the diversity gain (DG) was studied. The extracted measured results illustrated an impedance bandwidth of 3.5–8.2 GHz at port 1 and 3.5–8.3 GHz at port 2 for VWSR < 2 and 3 dB ARBW of 4.6–7.6 GHz at port 1 and 4.6–7.5 GHz at port 2. The peak gain of 9.9 dBi was at 6 GHz.


In this article, we have presented various techniques that are used for improving different parameters related to UWB antenna. In this Paper, we planned for MIMO antennas in contemporary wireless communication which enhances the bandwidth and gives compact antennas. The antenna band we notched is of planned MIMO which offers an bandwidth with the operational band-notched. The bandwidth capacity of the antenna is from 2.93-20 gigahertz with sharp rejection at WLAN-band with isolation of not exactly - 22 dB is accomplished for the whole band, by utilizing a simple modified shaped structure in the bottom plane, port isolation and transmission capacity are improved. The diversity execution performance is likewise contemplated and whole outcomes shows it’s a potential point of using MIMO based diversity antenna for ultra wide band applications which is demonstrate in this paper. The parameters to assess the performance of the MIMO are explained, the whole examination completed in different sections has been outlined


Author(s):  
Mekala Harinath Reddy ◽  
D. Seela

This paper demonstrates a compact MIMO (Multi Input Multi Output) fractal type antenna for ultra-wide band applications. The proposed antenna is manufactured on a lowcost substrate material and the design is analyzed for various iterations in terms of reflection coefficient, gain, and bandwidth. The 50 Ω transmission line feed is used for both fractal patches and a metamaterial structure is used as the ground plane. The proposed design achieved a wide-band frequency response between 5.8 and 15 GHz, with the reflection coefficient of less than –10 dB. Reduced mutual coupling, positive gain and stable radiation patterns were observed throughout the operating band as well. The bandwidth of 9.2 GHz is achieved with the use of a metamaterial structure on the ground plane. The ECC and diversity gain obtained prove the excellent diversity performance of the antenna. The design was simulated using HFSS software and was tested in a lab.


A MIMO antenna with micro strip fed ultra wide band nature with characteristics of single band notching is presented in this paper. MIMO antenna has two monopole antennas. Larger impedance bandwidth is obtained by providing slots beside the feed line on ground plane. By using parasitic element on back side of patch band notching characteristics cab be obtained. Here, antenna size is 44x22x1.6 mm3 . This antenna operates over the frequency band 4GHz to 11GHz with notched frequency band 5.1GHz to 5.9GHz. By keeping two monopole antennas perpendicular to each other, isolation of less than - 15dB is obtained and good value of ECC is obtained.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1582
Author(s):  
Ahsan Altaf ◽  
Amjad Iqbal ◽  
Amor Smida ◽  
Jamel Smida ◽  
Ayman A. Althuwayb ◽  
...  

Multiple-input multiple-output (MIMO) scheme refers to the technology where more than one antenna is used for transmitting and receiving the information packets. It enhances the channel capacity without more power. The available space in the modern compact devices is limited and MIMO antenna elements need to be placed closely. The closely spaced antennas undergo an undesirable coupling, which deteriorates the antenna parameters. In this paper, an ultra wide-band (UWB) MIMO antenna system with an improved isolation is presented. The system has a wide bandwidth range from 2–13.7 GHz. The antenna elements are closely placed with an edge to edge distance of 3 mm. In addition to the UWB attribute of the system, the mutual coupling between the antennas is reduced by using slotted stub. The isolation is improved and is below −20 dB within the whole operating range. By introducing the decoupling network, the key performance parameters of the antenna are not affected. The system is designed on an inexpensive and easily available FR-4 substrate. To better understand the working of the proposed system, the equivalent circuit model is also presented. To model the proposed system accurately, different radiating modes and inter-mode coupling is considered and modeled. The EM model, circuit model, and the measured results are in good agreement. Different key performance parameters of the system and the antenna element such as envelope correlation coefficient (ECC), diversity gain, channel capcity loss (CCL) gain, radiation patterns, surface currents, and scattering parameters are presented. State-of-the-art comparison with the recent literature shows that the proposed antenna has minimal dimensions, a large bandwidth, an adequate gain value and a high isolation. It is worth noticeable that the proposed antenna has high isolation even the patches has low edge-to-edge gap (3 mm). Based on its good performance and compact dimensions, the proposed antenna is a suitable choice for high throughput compact UWB transceivers.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Preeti Pannu ◽  
Devendra Kumar Sharma

Purpose This paper aims to design a most demanding low profile and compact ultra-wide band (UWB) antenna system for various wireless applications. The performance (in terms of data rate) of UWB system is improved by using multiple-input-multiple-output (MIMO) technology with it. Owing to the overlap of other existing licensed bands with that of UWB, electromagnetic signals can interfere. So, notched band UWB MIMO antenna system reported here which is highly compact, bandwidth efficient, superior data rate and high inter-element isolation comparatively to other reported designs. Design/methodology/approach A 49 × 49 × 1.6 mm3 quad-port UWB MIMO antenna with specific bandwidth elimination property is designed. The proposed planar MIMO configuration comprises unique four identical “Cordate-shaped” monopole radiators fed by 2.3-mm thick microstrip-lines. The radiators are located right-angled to each other to enhance inter-element isolation. Further, a different approach of slitted-substrate is applied to minimize the overall size and mutual coupling of the MIMO antenna, as a substitute of decoupling and matching structures. The defected ground structure is used to obtain −10 dB impedance bandwidth in entire UWB band, without compromising with the lower cut-off frequency response. Further, to eliminate the undesired resonant band (WLAN at 5.5 GHz) from UWB, a rounded split ring resonator is introduced in monopole patch. Findings In the entire operating band of 2.8 to 11 GHz, isolation among elements is more than 24 dB, envelope correlation coefficient less than 0.002, diversity gain greater than 9.99 dB and TARC less than −7 dB are obtained at all 4-ports. Research limitations/implications The measured parameters of the fabricated prototype antenna on FR4 substrate are found in good agreement with the simulated results. The small variation in software results and hardware results are observed due to hardware design limitations. Practical implications The proposed design may be used for any wireless application following in the range of UWB. Originality/value It can be shown from graphs of measured parameters of the fabricated prototype antenna. They found to be in good agreement with the simulated results.


Sign in / Sign up

Export Citation Format

Share Document