scholarly journals MIMO Antenna Design and Optimization with Enhanced Bandwidth for Wireless Applications

Author(s):  
Mekala Harinath Reddy ◽  
D. Seela

This paper demonstrates a compact MIMO (Multi Input Multi Output) fractal type antenna for ultra-wide band applications. The proposed antenna is manufactured on a lowcost substrate material and the design is analyzed for various iterations in terms of reflection coefficient, gain, and bandwidth. The 50 Ω transmission line feed is used for both fractal patches and a metamaterial structure is used as the ground plane. The proposed design achieved a wide-band frequency response between 5.8 and 15 GHz, with the reflection coefficient of less than –10 dB. Reduced mutual coupling, positive gain and stable radiation patterns were observed throughout the operating band as well. The bandwidth of 9.2 GHz is achieved with the use of a metamaterial structure on the ground plane. The ECC and diversity gain obtained prove the excellent diversity performance of the antenna. The design was simulated using HFSS software and was tested in a lab.

2015 ◽  
Vol 6 (3) ◽  
pp. 1-15 ◽  
Author(s):  
Wan Noor Najwa Wan Marzudi ◽  
Zuhairiah Zainal Abidin ◽  
Siti Zarina Mohd Muji ◽  
Yue Ma ◽  
Raed A. Abd-Alhameed

This paper presented a planar printed multiple-input-multiple-output (MIMO) antenna with a dimension of 100 x 45 mm2. It composed of two crescent shaped radiators placed symmetrically with respect to the ground plane. Neutralization line applied to suppress mutual coupling. The proposed antenna examined both theoretically and experimentally, which achieves an impedance bandwidth of 18.67% (over 2.04-2.46 GHz) with a reflection coefficient < -10 dB and mutual coupling minimization of < -20 dB. An evaluation of MIMO antennas is presented, with analysis of correlation coefficient, total active reflection coefficient (TARC), capacity loss and channel capacity. These characteristics indicate that the proposed antenna suitable for some wireless applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. M. Islam ◽  
M. R. I. Faruque ◽  
M. T. Islam

A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm2, and VSWR < 2, observing band elimination of 5.5 GHz WLAN band.


2019 ◽  
Vol 16 (10) ◽  
pp. 4242-4248
Author(s):  
Manoj Kapil ◽  
Manish Sharma

In this research article, a compact MIMO (Multiple-Input-Multiple-Output) antenna with inclusion of two notched bands characteristics is presented. Designed MIMO antenna consist of dual radiating patches printed on one surface of the substrate which covers measured wide impedance bandwidth of 2.88 GHz–19.98 GHz and satisfies bandwidth ratio more than 10:1 for superwideband with compact size of 18 mm × 34 mm. Two radiating patch are placed symmetrically for MIMO configuration and notched bands to eliminate WiMAX/C and WLAN bands are obtained by attaching inverted T-shaped stub on radiating patch and etched inverted U-shape slit in microstrip feed. Isolation between the two radiating patch is maintained by adding two L-shaped stub in slotted rectangular ground plane. Measured radiation pattern are stable in operating band and offers maximum 4.23 dBi and 89% gain and radiation efficiency respectively. Moreover, antenna shows good diversity performance with Envelope-Correlation-Coefficient (ECC) < 0.5, Directive-Gain (DG) > 9.95 dB and Total-Active-Reflection Coefficient (TARC) < -30 dB.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Chia-Hao Wu ◽  
Jwo-Shiun Sun ◽  
Bo-Shiun Lu

This paper presents a compact four-element multiple-input–multiple-output (MIMO) antenna design operating within the WiFi 802.11 ac bands (5.2–5.84 GHz) for a smartwatch. The antenna is fabricated using a polyamide substrate and embedded into the strap of a smartwatch model; the strap is created using three-dimensional etching of plastic materials. The four-element MIMO antenna is formed by four monopole antennas, has a simple structure, and is connected to the system ground plane of the smartwatch. Due to the stub and notched block between two antennas and the slit in the system ground, the four-element MIMO antenna exhibits favorable isolation. Moreover, the envelope correlation coefficient of the antennas is considerably lower than 0.005 in the operating band. The measured −6 dB impedance bandwidths of the four elements of the antenna (Ant1–Ant4) with the human wrist encompass the WiFi 802.11 ac range of 5.2–5.84 GHz; moreover, an isolation of more than 20 dB is achieved. The measured antenna efficiency with and without a phantom hand are 45%–55% and 93%–97%, respectively.


Author(s):  
Ashish Singh ◽  
Krishnananda Shet ◽  
Durga Prasad

In this chapter, ultra wide band angular ring antenna has been proposed for wireless applications. It has been observed that antenna resonate from 2.9 to 13.1 GHz which has 10.2 GHz bandwidth. Further, it is observed that antenna has nearly omni-directional radiation pattern for E and H-plane at 3.5, 5.8, and 8.5 GHz. The theoretical analysis of the proposed has been done using circuit theory analysis. It was also found using simulation that antenna has good input and output response of 0.2 ns. Proposed antenna measured, simulated, and theoretical results matches for antenna characteristics, i.e., reflection coefficient and radiation pattern. Bandwidth of antenna lies between 2.9 and 13.1 GHz, so this antenna is suitable for Wi-Fi, Wi-Max, digital communication system (DCS), satellite communication, and 5G applications.


Author(s):  
M.M. Gajibo ◽  
M. K. A. Rahim ◽  
N. A. Murad ◽  
O. Ayop ◽  
H.A. Majid ◽  
...  

<span>A metamaterial structure capable of operating as a wide band absorber as well as an AMC reflector is presented in this report. A microstrip patch copper was used as a switch to switch between the two modes. An FR4 substrate was used and the incidental wave angles were varied from 0<sup>0</sup> to 60<sup>0</sup>. Simulations results showed that the absorber was able achieve 96% absorption at 13.05 GHz and 100% absorption at 10.00 GHz and 12.00 GHz. Furthermore, it archived over 85% absorption for the entire X-band frequency range. The AMC reflector also was able to achieve 84.97%, 82.88% and 78.69% for incident angles 0<sup>0</sup>, 20<sup>0 </sup>and 40<sup>0</sup> respectively. Unfortunately, the structure is polarization sensitive.</span>


2018 ◽  
Vol 7 (3) ◽  
pp. 87-92 ◽  
Author(s):  
P. Khanna ◽  
A. Sharma ◽  
A. K. Singh ◽  
A. Kumar

A CPW – Fed octagonal ring shaped antenna for wideband operation is presented. The radiating patch of proposed octagonal ring antenna consists of symmetrical slot in place of conventional annular ring microstrip antenna. The ground plane consists of two rectangular slots, while the radiator and the ground plane are on same plane that utilizes the space available around the radiator. The proposed antenna is simulated through Ansoft’s High Frequency Structure Simulator (HFSS). Measured result shows balanced agreement with the simulated results. The prototype is taken with dimensions 47 mm × 47 mm × 1.6 mm that achieves good return loss, constant group delay and good radiation patterns over the entire operating bandwidth of 2.0 to 9.5 GHz (7.5 GHz). The proposed antenna achieves high impedance bandwidth of 130%. Thus, the proposed antenna is applicable for S and C band applications.


A MIMO antenna with micro strip fed ultra wide band nature with characteristics of single band notching is presented in this paper. MIMO antenna has two monopole antennas. Larger impedance bandwidth is obtained by providing slots beside the feed line on ground plane. By using parasitic element on back side of patch band notching characteristics cab be obtained. Here, antenna size is 44x22x1.6 mm3 . This antenna operates over the frequency band 4GHz to 11GHz with notched frequency band 5.1GHz to 5.9GHz. By keeping two monopole antennas perpendicular to each other, isolation of less than - 15dB is obtained and good value of ECC is obtained.


In this paper, simple triband Multiple Input and Multiple Output (MIMO) antenna is proposed for wireless communication technology. This antenna consists of two symmetric monopoles which are placed at a distance of 0.106λ0 and for board area it occupies 0.25λ0*0.26λ0 . By integrating a stub in the ground plane and adding the stub in the feed line, isolation is achieved more than 20dB.This triband MIMO antenna operates under 2.5GHz, 3.3GHz and 4.4 GHz. The proposed antenna gives Radiation Patterns and Stable Gain. Mean effective gain (MEG) and Diversity Gain (DG) are also measured.


Sign in / Sign up

Export Citation Format

Share Document