scholarly journals Three-Dimensional Analysis of Gate-Entry Stability in Multiple Seams Longwall Coal Mine Under Weak Rock Conditions

2020 ◽  
Vol 9 (1) ◽  
pp. 72
Author(s):  
Pisith Mao ◽  
Hideki Shimada ◽  
Akihiro Hamanaka ◽  
Sugeng Wahyudi ◽  
Jiro Oya ◽  
...  

A study of multiple seams longwall mining is proposed to investigate its applicability in Indonesia coal mine. The study area of this research is PT Gerbang Daya Mandiri (GDM) coal mine located in East Kalimantan Island. The study of seam interaction is crucial for developing multiple seams longwall mining especially when it comes to weak rock conditions which are usually found in most of the coal reserves in Indonesia. This paper will use numerical simulation to investigate the effect of the first mined-out seam on the development of the second coal seam gate-entry by considering a couple of key parameters including depth of the coal seam and interburden length. The simulation model consists of two main indicators for instability which include failure zone, the contour of safety factor. The results show that the effect of seam interaction on gate-entry has different intensity based on the thickness of the interburden and coal seam depth. This work also provided appropriate support configuration for maintaining the stability of gate-entry.

2013 ◽  
Vol 295-298 ◽  
pp. 2980-2984
Author(s):  
Xiang Qian Wang ◽  
Da Fa Yin ◽  
Zhao Ning Gao ◽  
Qi Feng Zhao

Based on the geological conditions of 6# coal seam and 8# coal seam in Xieqiao Coal Mine, to determine reasonable entry layout of lower seam in multi-seam mining, alternate internal entry layout, alternate exterior entry layout and overlapping entry layout were put forward and simulated by FLAC3D. Then stress distribution and displacement characteristics of surrounding rock were analyzed in the three ways of entry layout, leading to the conclusion that alternate internal entry layout is a better choice for multi-seam mining, for which makes the entry located in stress reduce zone and reduces the influence of abutment pressure of upper coal seam mining to a certain extent,. And the mining practice of Xieqiao Coal Mine tested the results, which will offer a beneficial reference for entry layout with similar geological conditions in multi-seam mining.


Author(s):  
Oleksandr Ahafonov ◽  
◽  
Daria Chepiga ◽  
Anton Polozhiy ◽  
Iryna Bessarab ◽  
...  

Purpose. Substantiation of expediency and admissibility of use of the simplified calculation models of a coal seam roof for an estimation of its stability under the action of external loadings. Methods. To achieve this purpose, the studies have been performed using the basic principles of the theory of elasticity and bending of plates, in which the coal seam roof is represented as a model of a rectangular plate or a beam with a symmetrical cross-section with different support conditions. Results. To substantiate and select methods for studying the bending deformations of the roof in the coal massif containing the maingates, the three-dimensional base plate model and the beam model are compared, taking into account the kinematic boundary conditions and the influence of external distributed load. Using the theory of plate bending, the equations for determining the deflections of the coal seam roof in three-dimensional basic models under certain assumptions have a large dimension. After the conditional division of the plate into beams of unit width and symmetrical section, when describing the normal deflections of the middle surface of the studied models, the transition from the partial derivative equation to the usual differential equations is carried out. In this case, the studies of bending deformations of roof rocks are reduced to solving a flat problem in the cross-section of the beam. A comparison of solutions obtained by the methods of the three-dimensional theory of elasticity and strength of materials was performed. For a beam with a symmetrical section, the deflection lies in a plane whose angle of inclination coincides with the direction of the applied load. The calculations did not take into account the difference between the intensity of the surface load applied to the beam. Differences in determining the magnitude of the deflections of the roof in the model of the plate concerning the model of the beam reach 5%, which is acceptable for mining problems. Scientific novelty. To study the bending deformations and determine the magnitude of the roof deflection in models under external uniform distributed load, placed within the simulated plate, a strip of unit width was selected, which has a symmetrical cross-section and is a characteristic component of the plate structure and it is considered as a separate load-bearing element with supports, the cross-sections of this element is remained flat when bending. The deflection of such a linear element is described by the differential equations of the bent axis of the beam without taking into account the integral stiffness of the model, and the vector of its complete displacement coincides with the vector of the force line. Practical significance. In the laboratory, to study the bending deformations and their impact on the stability of the coal seam roof under external loads, it is advisable to use a model of a single width beam with a symmetrical section with supports, the type of which is determined by rock pressure control and secondary support of the maingate at the extraction layout of the coal mine.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Wenyu Lv ◽  
Kai Guo ◽  
Jianhao Yu ◽  
Xufeng Du ◽  
Kun Feng

The movement of the overlying strata in steeply dipping coal seams is complex, and the deformation of roof rock beam is obvious. In general, the backfill mining method can improve the stability of the surrounding rock effectively. In this study, the 645 working face of the tested mine is used as a prototype to establish the mechanical model of the inclined roof beam using the sloping flexible shield support backfilling method in a steeply dipping coal seam, and the deflection equation is derived to obtain the roof damage structure and the maximum deflection position of the roof beam. Finally, numerical simulation and physical similarity simulation experiments are carried out to study the stability of the surrounding rock structure under backfilling mining in steeply dipping coal seams. The results show the following: (1) With the support of the gangue filling body, the inclined roof beam has smaller roof subsidence, and the maximum deflection position moves to the upper part of working face. (2) With the increase of the stope height, the stress and displacement field of the surrounding rock using the backfilling method show an asymmetrical distribution, the movement, deformation, and failure increase slowly, and the increase of the strain is relatively stable. Compared with the caving method, the range and degree of the surrounding rock disturbed by the mining stress are lower. The results of numerical simulation and physical similarity simulation experiment are generally consistent with the theoretically derived results. Overall, this study can provide theoretical basis for the safe and efficient production of steeply dipping coal seams.


2014 ◽  
Vol 955-959 ◽  
pp. 3120-3124
Author(s):  
Kai Bian ◽  
Shi Lei Chen ◽  
Xue Yuan Li ◽  
Ying Wang Zhao

In order to figure out seepage field in aquifer under the coal seam, the geology and hydrogeology conditions systematically of study area were analyzed, hydrogeological conceptual model was generalized, mathematical model was built, seepage field of the Taiyuan limestone aquifer was simulated with software Feflow. Simulation results show that hydrogeological parameters of Taiyuan limestone aquifer change greatly in different partitions. The model also indicates the heterogeneity of karst fissure of Taiyuan limestone aquifer. The drainage quantity is from the Ordovician limestone aquifer besides supplying from runoff of upstream and capture excretion of downstream. The research is an attempt to simulate the seepage field in aquifer under coal seam, to some extent, it also provides a technical basis for safe coal mining and as a reference for simulation constructions of three-dimensional groundwater flow models in similar coal mines.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Guorui Feng ◽  
Pengfei Wang ◽  
Yoginder P. Chugh ◽  
Jingli Zhao ◽  
Zhiqiang Wang ◽  
...  

A coal burst mitigation strategy for tailgate in mining of deep inclined longwall panels with top coal caving at Huafeng Coal Mine is presented in this paper. Field data showed that coal bursts, rib sloughing or slabbing, large convergence, and so forth frequently occurred within the tailgate entries during development and panel retreating employing standard longwall top coal caving (LTCC) layout which resulted in fatal injuries and tremendous profit loss. The contributing factors leading to coal bursts were analyzed. Laboratory tests, in situ measurement, and field observation demonstrate that the intrinsic bursting proneness of the coal seam and immediate roof stratum, deep cover, overlying ultrathick (500–800 m) conglomerate strata, faults, and, most importantly, improper panel layout led to coal bursts. By employing a new strategy, that is, longwall mining with split-level gateroads (LMSG), gateroads on either end of a LMSG panel are located at different levels within a coal seam, adjacent LMSG panels overlap end to end, and the tailgate of the adjacent new LMSG panel can be located below the headgate entry of the previous LMSG panel or may be offset horizontally with respect to it. Numerical modeling was carried out to investigate the stress distribution and yield zone development within surrounding rock mass which was validated by field investigation. The results indicate that standard LTCC system gave rise to high ground pressure around tailgate entries next to the gob, while LMSG tailgate entry below the gob edge was in a destressed environment. Therefore, coal bursts are significantly mitigated. Field practice of LMSG at Huafeng Coal Mine demonstrates how the new strategy effectively dealt with coal burst problems in mining of deep inclined longwall panels with a reduced incidence of ground control problems. The new strategy can potentially be applied in similar settings.


2021 ◽  
Author(s):  
Rongxin WU ◽  
Huanqi GU ◽  
zean hu

Abstract The transparency of coal seam working face is an important assurance for safe and accurate mining of coal mines. Mine geophysical prospecting is an important means for geological exploration of coal seam working faces, among which the mine radio wave tomography is one of the most common and effective methods. However, the undulating feature of the coal seam will greatly interfere the high-precision attenuation electromagnetic wave imaging. Through two-dimensional numerical simulation experiments, we identified that in a horizontal coal seam, the energy of penetrated radio wave showed an approximate linear attenuation law, while in an inclined coal seam, it showed a very different parabolic attenuation trend. To eliminate the influence of coal seam inclination on the accuracy of radio wave tomography, in this paper, we proposed a correction method for imaging undulating coal seams using radio wave tomography. Further, through three-dimensional numerical simulation experiments, we verified the validity and reliability of the correction method. Overall, both theoretical and numerical simulation experiments indicated that the method could basically eliminate the influence of coal seam inclination and improve the imaging accuracy.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Gen Ge ◽  
Wei Wang

The analytical method to predict the period-doubling bifurcation of the three-dimensional (3D) system is improved by using the undetermined fundamental frequency method. We compute the stable response of the system subject to the quadratic and cubic nonlinearity by introducing the undetermined fundamental frequency. For the occurrence of the first and second period-doubling bifurcation, the new bifurcation criterion is accomplished. It depends on the stability of the limit cycle on the central manifold. The explicit applications show that the new results coincide with the results of the numerical simulation as compared with the initial methods.


2012 ◽  
Vol 524-527 ◽  
pp. 382-386
Author(s):  
Xiao Kang Zhang ◽  
Hong Jun Jiang ◽  
Fu Lian He ◽  
Ming Yue Weng

For the support problem of set-up room to be 7.8m wide with thick and broken coal roof in Pangpangta coal mine, the truss cable support system is adopted to control the set-up room surrounding rock. The main support parameters, such as cable length, cable angle and distance between orifice and side of the truss cable support system are simulated and optimally designed by using numerical simulation software FLAC3D, by which the support scheme is designed reasonably. The support scheme is successfully tested at set-up room No. 10101 in Pangpangta mine. The set-up room deformation is small, and the support system is safe and reliable. This kind of support technology can be widely used in the similar set-up rooms.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3084
Author(s):  
Shixing Cheng ◽  
Zhanguo Ma ◽  
Peng Gong ◽  
Kelong Li ◽  
Ning Li ◽  
...  

In longwall mining of coal mines, the large deformation of small pillar retaining roadways creates difficulties for the safe and efficient retreating of the mining panel. Based on the engineering background of a small coal pillar retaining roadway in Wangzhuang coal mine, pressure relief technology for non-penetrating directional pre-splitting blasting with a deep hole ahead was proposed. The influence of the non-penetrating fracture length on the pre-splitting effect was studied by numerical simulation. The results showed that the vertical stress in the coal pillar center, the small pillar retaining roadway deformation, and the energy accumulation on the pillar decreased with an increase in the non-penetrating fracture length. The vertical stress at the working face end increased with an increase in the non-penetrating fracture length. The field application and monitoring results indicated that non-penetrating directional pre-splitting blasting could effectively control the deformation of small pillar retaining roadways. The roof-to-floor and rib-to-rib maximum convergences of the 6208 tail entry were reduced by 53.66% and 52.62%, respectively, compared to the results with no blasting. The roadway section met the demands of mining panel high-efficiency retreating, thereby demonstrating the rationality of the technical and numerical simulation results. The research results shed light on the improvement of small coal pillar retaining roadway maintenance theory and technology.


Sign in / Sign up

Export Citation Format

Share Document