scholarly journals Fuel Consumption, Greenhouse Gas Emissions, and Energy Efficiency of Wood-Harvesting Operations

2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Hanna Haavikko ◽  
Kalle Kärhä ◽  
Asko Poikela ◽  
Mika Korvenranta ◽  
Teijo Palander

The EU’s climate and energy framework and Energy Efficiency Directive drive European companies to improve their energy efficiency. In Finland, the aim is to achieve carbon neutrality by 2035. Stora Enso Wood Supply Finland (WSF) had a target, by 2020, to improve its energy efficiency by 4% from the 2015 level. This case study researches the use of the forest machine fleet contracted to Stora Enso WSF. The aims were to 1) clarify the forest machine fleet energy-efficiency as related to the engine power; 2) determine the fuel consumption and greenhouse gas (GHG) emissions from wood-harvesting operations, including relocations of forest machines by trucks; and 3) investigate the energy efficiency of wood-harvesting operations. The study data consisted of Stora Enso WSF’s industrial roundwood harvest of 8.9 million m3 (solid over bark) in 2016. The results illustrated that forest machinery was not allocated to the different cutting methods (thinning or final felling) based on the engine power. The calculated fuel consumption totalled 14.2 million litres (ML) for harvesting 8.9 million m3, and the calculated fuel consumption of relocations totalled 1.2 ML, for a total of 15.4 ML. The share of fuel consumption was 52.5% for harvesters (cutting), 39.5% for forwarders (forest haulage), and 8.0% for forest machine relocations. The average calculated cubic-based fuel consumption of wood harvesting was 1.6 L/m3, ranging from the lowest of 1.2 L/m3 for final fellings to the highest of 2.8 L/m3 in first thinnings. The calculated fuel consumption from machine relocations was, on average, 0.13 L/m3. The calculated carbon dioxide equivalent (CO2 eq.) emissions totalled 40,872 tonnes (t), of which 21,676 t were from cutting, 16,295 t were from forwarding, and 2,901 t from relocation trucks. By cutting method, the highest calculated CO2 eq. emissions were recorded in first thinnings (7340 g CO2 eq./m3) and the lowest in final fellings (3140 g CO2 eq./m3). The calculated CO2 eq. emissions in the forest machine relocations averaged 325 g CO2 eq./m3. The results underlined that there is a remarkable gap between the actual and optimal allocation of forest machine fleets. Minimizing the gap could result in higher work productivity, lower fuel consumption and GHG emissions, and higher energy efficiency in wood-harvesting operations in the future.

Author(s):  
Nikhil Kaushal ◽  
Ching-Shin Norman Shiau ◽  
Jeremy J. Michalek

Plug-in hybrid electric vehicle (PHEVs) technology has the potential to address economic, environmental, and national security concerns in the United States by reducing operating cost, greenhouse gas (GHG) emissions and petroleum consumption. However, the net implications of PHEVs depend critically on the distances they are driven between charges: Urban drivers with short commutes who can charge frequently may benefit economically from PHEVs while also reducing fuel consumption and GHG emissions, but drivers who cannot charge frequently are unlikely to make up the cost of large PHEV battery packs with future fuel cost savings. We construct an optimization model to determine the optimal PHEV design and optimal allocation of PHEVs, hybrid-electric vehicles (HEVs) and conventional vehicles (CVs) to drivers in order to minimize net cost, fuel consumption, and GHG emissions. We use data from the 2001 National Household Transportation Survey to estimate the distribution of distance driven per day across vehicles. We find that (1) minimum fuel consumption is achieved by assigning large capacity PHEVs to all drivers; (2) minimum cost is achieved by assigning small capacity PHEVs to all drivers; and (3) minimum greenhouse gas emissions is achieved by assigning medium-capacity PHEVs to drivers who can charge frequently and large-capacity PHEVs to drivers who charge less frequently.


2021 ◽  
pp. 32-40
Author(s):  
Rafał M. Łukasik

The European (and global) energy sector is in a process of profound transformation, making it essential for changes to take place that influence energy producers, operators, and regulators, as well as consumers themselves, as they are the ones who interact in the energy market. The RED II Directive changes the paradigm of the use of biomass in the heat and electricity sectors, by introducing sustainability criteria with mandatory minimum greenhouse gas (GHG) emission reductions and by establishing energy efficiency criteria. For the transport sector, the extension of the introduction of renewables to all forms of transport (aviation, maritime, rail and road short and long distance), between 2021-2030, the strengthening of energy efficiency and the strong need to reduce GHG emissions, are central to achieving the national targets for renewables in transport, representing the main structural changes in the European decarbonisation policy in that sector. It is necessary to add that biomass is potentially the only source of renewable energy that makes it possible to obtain negative GHG emission values, considering the entire life cycle including CO2 capture and storage. Hence, this work aims to analyse the relevance of biomass for CHP and in particular, the use of biomass for biofuels that contribute to achieving carbon neutrality in 2050. The following thematic sub-areas are addressed in this work: i) the new environmental criteria for the use of biomass for electricity in the EU in light of now renewable energy directive; ii) current and emerging biofuel production technologies and their respective decarbonization potential; iii) the relevance or not of the development of new infrastructures for distribution renewable fuels, alternatives to the existing ones (biomethane, hydrogen, ethanol); iv) the identification of the necessary measures for biomass in the period 2020-2030


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 965 ◽  
Author(s):  
Jacek Brożyna ◽  
Wadim Strielkowski ◽  
Alena Fomina ◽  
Natalya Nikitina

Our paper focuses on the renewable energy and EU 2020 target for energy efficiency in the Czech Republic and Slovakia. We study the reduction of greenhouse gas (GHG) emissions in these two EU Member States through the prism of the Europe 2020 strategy and the 3 × 20 climate and energy package and economic growth (represented by the Gross Domestic Product (GDP) that allows to measure the national dynamics and provide cross-country comparisons) without attributing specific attention to issues such as the electrification of transport or heating, and thence leaving them outside the scope of this paper. Both Czech Republic and Slovakia are two post-Communist countries that still face the consequences of economic transformation and struggle with the optimal management of natural resources. Both countries encountered profound system transformation after 1989 that are apparent in all three measures of sustainable development used in our study. We show that it is unlikely that the planned increase in renewable energy in the Czech Republic and Slovakia will reach its targets, but they might succeed in reducing their energy consumption and greenhouse gas emissions. Our findings show that the energy intensity of Czech and Slovak economies increased in the early 2000s and then stabilized at a level about twice of the EU average. It appears that this value is likely to remain the same in the forthcoming years. However, implementation of GHG emissions in the Czech Republic and Slovakia may be at risk in case the proper energy policy is not maintained. Moreover, our results show how the increase in the share of renewable energy and improvement in energy efficiency go hand-in-hand with mining and exploiting the energy sources that is notorious for the transition economies. We also demonstrate that a proper energy policy is required for effectively reducing energy consumption and greenhouse gas emissions. There is a need for commitments made by relevant stakeholders and policymakers targeted at achieving sustainable economic growth and energy efficiency. In addition, we demonstrate that there is a need for maintaining a proper balance between economic development and environmental protection, which is a must for the EU sustainable energy development agenda and all its accompanying targets for all its Member States.


2011 ◽  
Vol 133 (8) ◽  
Author(s):  
Ching-Shin Norman Shiau ◽  
Jeremy J. Michalek

We pose a reformulated model for optimal design and allocation of conventional (CV), hybrid electric (HEV), and plug-in hybrid electric (PHEV) vehicles to obtain global solutions that minimize life cycle greenhouse gas (GHG) emissions of the fleet. The reformulation is a twice-differentiable, factorable, nonconvex mixed-integer nonlinear programming (MINLP) model that can be solved globally using a convexification-based branch-and-reduce algorithm. We compare results to a randomized multistart local-search approach for the original formulation and find that local-search algorithms locate global solutions in 59% of trials for the two-segment case and 18% of trials for the three-segment case. The results indicate that minimum GHG emissions are achieved with a mix of PHEVs sized for 25–45 miles of electric travel. Larger battery packs allow longer travel on electrical energy, but production and weight of underutilized batteries result in higher GHG emissions. Under the current average U.S. grid mix, PHEVs offer a nearly 50% reduction in life cycle GHG emissions relative to equivalent conventional vehicles and about 5% improvement over HEVs when driven on the standard urban driving cycle. Optimal allocation of different PHEVs to different drivers turns out to be of second order importance for minimizing net life cycle GHGs.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1611 ◽  
Author(s):  
Daniela Fighir (Arsene) ◽  
Carmen Teodosiu ◽  
Silvia Fiore

Municipal wastewater treatment plants (MWWTPs) are essential infrastructures in any urban context, but they may be considered as a potential source of greenhouse gas (GHG) emissions and should be coherent with European Union (EU) policy on energy efficiency. This study presents a sustainability evaluation of four Italian and Romanian MWWTPs in terms of energy efficiency and greenhouse gas emissions using Energy Performance and Carbon Emissions Assessment and Monitoring (ECAM) tool software. The obtained results indicated that biogas recovery improved energy performances, while the largest contributions in terms of GHG emissions were in all cases caused by energy consumption and methane produced during wastewater treatment. The Romanian plants exhibited higher GHG emissions, compared to the Italian plants, mainly because of the different values of national conversion factors for grid electricity (0.41 kg CO2/kWh for Italy and 1.07 kg CO2/kWh for Romania). Two scenarios aimed at enhancing the overall sustainability were hypothesized, based on increasing the serviced population or energy efficiency, achieving significant improvements. A sustainability assessment of MWWTPs should be adopted as a useful tool to help water utilities to introduce low-energy, low-carbon management practices as well as being useful for policy recommendations.


2020 ◽  
Vol 12 (19) ◽  
pp. 8214
Author(s):  
Toshiro Semba ◽  
Yuji Sakai ◽  
Miku Ishikawa ◽  
Atsushi Inaba

According to the Ellen MacArthur Foundation, 73% of used clothing is landfilled or incinerated globally and greenhouse gas (GHG) emissions from fabric manufacturing in 2015 amounted to 1.2 billion tons. It must be reduced in the future, especially by reusing and recycling used clothing. Based on this perspective, researchers calculated the energy consumption and GHG emissions associated with reusing and recycling used clothing globally with a life cycle assessment (LCA). However, no study was conducted so far to estimate the total GHG emission reductions in Japan by reusing and recycling used clothing. In this study, the amount of used clothing currently discharged from households as combustible and noncombustible waste and their fiber types were estimated using literature. Then, the methods for reusing and recycling of used clothing were categorized into the following 5 types based on fiber type, that is, “reuse overseas,” “textile recycling to wipers,” “fiber recycling,” “chemical recycling” and “thermal recycling.” After that, by applying LCA, the GHG emission reductions by above 5 methods were estimated, based on the annual discharged weights of each fiber type. Consequently, the total GHG emissions reductions by reusing and recycling 6.03 × 108 kg of used clothing totally were estimated around 6.60 × 109 kg CO2e, to range between 6.57 × 109 kg CO2e and 6.64 × 109 kg CO2e, which depended on the type of “chemical recycling.” The largest contribution was “reuse overseas,” which was 4.01 × 109 kg CO2e corresponded to approximately 60% of the total reduction. Where, it was assumed that used clothing were exported from Japan to Malaysia which was currently the largest importing country. In this case, GHG emissions to manufacture new clothing in China, the largest country currently to export them to Japan, can be avoided, which are 29.4 kg CO2e and 32.5 kg CO2e respectively for 1 kg jeans and 1 kg T-shirts. Adding the GHG emissions for overseas transportation to this, on average, 32.0 kg CO2e per kg of used clothing was reduced by “reuse overseas,” which was 19.6 times larger than GHG emissions by incineration, 1.63 kg CO2e per kg, in which carbon neutrality for cotton was not counted. As the result, the total GHG emission reductions above mentioned, around 6.60 × 109 kg CO2e, corresponds to 70% of the GHG emissions by incineration of total household garbage in Japan.


Author(s):  
Hessam AzariJafari ◽  
Jeremy Gregory ◽  
Randolph Kirchain

Various methods have been proposed to reduce greenhouse gas (GHG) emissions associated with transportation. We investigate the potential of increasing the elastic modulus of pavement surface layers across the entire U.S. pavement network as a means of lowering vehicle excess fuel consumption (EFC) resulting from deflection-induced pavement–vehicle interaction. We show that in a business-as-usual case deflection-induced EFC represents up to 2660 million metric tons (Mt) over a 50-year analysis period. Elastic modulus increases can be accomplished using several currently implementable methods. The analysis shows that increasing the modulus of elasticity using 10% resurfacing in the network per year leads to an 18% reduction of GHG emissions from the pavement network, or 440 Mt CO2eq, over a 50-year analysis period. This would potentially offset 0.5% of the future GHG emission of the whole transportation sector.


2020 ◽  
Vol 62 (3) ◽  
pp. 341-346 ◽  
Author(s):  
Mehmet Fırat Baran ◽  
Omer Eren ◽  
Osman Gökdoğan ◽  
Halil Ibrahim Oğuz

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Dijuan Liang ◽  
Xi Lu ◽  
Minghao Zhuang ◽  
Guang Shi ◽  
Chengyu Hu ◽  
...  

AbstractChina has committed to reaching carbon neutrality by 2060, which will require a drastic cut in greenhouse gas (GHG) emissions from all sectors, including those from agricultural activities. A comprehensive, long-term, and spatially-precise profile of agricultural GHG emissions can help to accurately understand drivers of historical emissions and their implications for future mitigation. This study constructs province-level agricultural GHG emissions in China from 1978 to 2016. It considers primary and secondary emissions from a full range of agricultural activities related to crop farming, including crop residue open burning, rice cultivation, cropland change, cropland emissions, machinery use, nitrogen fertilizer production, and pesticide production. Annual or interpolated activity data from official sources and the latest emission factors available for China were adopted in this study. The data can be used in spatial and temporal analysis of emissions from cropping systems as well as the design of mitigation strategy in China.


2011 ◽  
Vol 22 (1) ◽  
pp. 18-25
Author(s):  
Emily Tyler ◽  
Michelle Du Toit ◽  
Zelda Burchell

AbstractEnergy efficiency activities driven by White Certificate Trading schemes (WCT) achieve the objective of conserving energy, and in most circumstances, also that of reducing greenhouse gas (GHG) emissions. The potential therefore exists that both objectives could be targeted by a single policy mechanism. Energy efficiency activities are important from a GHG mitigation perspective as they represent some of the least costly GHG mitigation activities available to economies. However, there are some significant differences between the use of a direct policy instrument to target GHG emissions mitigation, and the use of an indirect instrument such as WCT, whose direct policy objective is to achieve energy efficiency. Most importantly, WCT utilises intensity targets, whereas GHG mitigation is required by science to comprise absolute reductions. International experience does however suggest that white certificates can be fully fungible with a GHG mitigation policy instrument such as an emissions trading scheme, as long as double counting rules are firmly in place, and the design of the schemes are compatible.Given that 80 percent of the South African GHG emissions are energy related, with energy efficiency measures in industry, commerce and the residential sector representing the bulk of negative cost mitigation options available in the economy, energy efficiency has an important role to play in the country’s mitigation strategy.This paper presents results on research into WCT as a policy option for South Africa conducted in 2008 and presented at the Climate Change Summit 2009.  It investigates in particular the Electricity Conservation Scheme (ECS) as an option for incorporating a WCT mechanism.There is limited experience and therefore analysis on WCS available to date, and even less on the potential interaction and linkages of WCS and emissions trading schemes. This paper therefore identifies significa


Sign in / Sign up

Export Citation Format

Share Document