scholarly journals Geochemical character of Early-Middle Miocene volcanic rocks from central Hokkaido: Characterization of magma-related back-arc spreading at the margin of the volcanic field

2010 ◽  
Vol 116 (4) ◽  
pp. 199-218 ◽  
Author(s):  
Chie Furukata ◽  
Mitsuhiro Nakagawa ◽  
Wataru Hirose ◽  
Yoshiko Adachi
2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Toe Naing Oo ◽  
Agung Harijoko ◽  
Lucas Donny Setijadji

The Kyaukmyet prospect lies approximately 5 km ENE of the highsulfidation Kyisintaung copper-gold deposit, Monywa district, central Myanmar. Geologically, the research area is remarked by magmatic extrusion that occurred during the Late Oligocene to Middle Miocene of Magyigon Formation which led to the outcrops of volcanic rocks. Study detailed on petrographical and geochemical of the Kyaukmyet volcanic rocks has not been performed before the present work. The principal aim of this paper is to document the petrographical and geochemical characteristics of volcanic suite rocks exposed in the Kyaukmyet prospect. The results of this data have provided insight into the origin of the rocks and petrogenetic processes during evolution. Petrographically, all the studied volcanic rocks in the research area show that trachytic and porphyritic textures with phenocrysts of quartz, plagioclase, and K-feldspar which are embedded in a fine to medium grained groundmass. The accessory minerals of this rock consist of biotite, chlorite and opaque mineral.Geochemically, these volcanic rocks having calc-alkaline nature and classified as volcanic field (rhyolite) as well as volcanic arc setting. Based on the chondrite normalized spider diagram, LREE has enriched to HREE in this area which indicated negative Eu anomaly and subduction tectonic setting.


Author(s):  
Paolo Di Giuseppe ◽  
Samuele Agostini ◽  
Gianfranco Di Vincenzo ◽  
Piero Manetti ◽  
Mehmet Yilmaz Savaşçın ◽  
...  

AbstractAnatolia is characterised by a complex geodynamic evolution, mirrored by a wide spectrum of magmatism. Here, we investigated the timing and the geochemical/isotopic characters of the Miocene to Pliocene volcanism of Sivas–Malatya Region (Central Eastern Anatolia), and its relationships with local and regional tectonics. Na-alkaline basaltic lavas were emplaced during middle Miocene at Sivas (16.7–13.1 Ma), in the North, whilst transition from calc-alkaline to Na-alkaline rocks is observed at Yamadağ and Kepez Dağ volcanic complexes. Calc-alkaline products erupted during early to middle Miocene, and more precisely from 19.5 to 13.6 Ma at Yamadağ and from 16.4 to 13.5 Ma at Kepez Dağ, with final Na-alkaline activity of the Arguvan volcanic field lasting till late Miocene (15.7–10.6 Ma). Volcanism renewed during the Pliocene in the Kangal (5.9–4.0 Ma) volcanic field with the emission of K-alkaline igneous rocks. Mafic calc-alkaline and Na-alkaline rocks partially overlap in age but can be easily distinguished by their petrochemical characters. Mafic calc-alkaline igneous rocks show typical subduction-related petrological and geochemical affinities. They are both two-pyroxene or clinopyroxene and amphibole-bearing rocks, characterised by high LILE/HFSE values, with variable 87Sr/86Sri (0.70396–0.70539) and 143Nd/144Ndi (0.51260–0.51287). Mafic Na-alkaline igneous rocks are characterised by big olivine phenocrysts and show intraplate geochemical flavours, although some LILE depletion with respect to HFSE as well as variable 87Sr/86Sri (0.70347–0.70553) and 143Nd/144Ndi (0.51261–0.51291) isotopic compositions are present. These characteristics are suggestive for the occurrence, at some stage of their genesis, of a possible interaction with subduction-related reservoirs. The Kangal K-alkali basalts still show intraplate-like petrological and geochemical affinities with LILE/HFSE ratios similar to those of the Miocene Na-alkaline rocks, and largely variable 87Sr/86Sri (0.70425–0.70520) and 143Nd/144Ndi (0.51262–0.51277) isotopic compositions, overlapping the arrays observed in the earlier stages of volcanism. A general transition from calc-alkaline to Na-alkaline volcanic rocks is observed with time, according to the evolution of the geodynamics of the Anatolia region. Early to middle Miocene calc-alkaline magmas were derived by partial melting of the mantle wedge delimited by the subduction of the last oceanic branch of Neotethys. The Na-alkaline magmas, on the other hand, were generated within the asthenospheric mantle beneath the slab and migrated through slab tears into the mantle wedge where they mixed with subduction-related components. The subduction-related component decreased with time and transitional magmas are found in the youngest activity of Yamadağ and Kepez Dağ, shortly followed by clear within-plate lavas formed in the Arguvan volcanic field. The appearance of the youngest K-alkaline volcanic rocks in the Kangal basin represents an abrupt change in the magma supply at depth, although continental crustal contamination en-route to the surface played an important role in their genesis.


2018 ◽  
Author(s):  
Katie O'Sullivan ◽  
◽  
Stewart Harvin ◽  
Virginia Rodriguez ◽  
Favour Epuna ◽  
...  

2003 ◽  
Vol 40 (6) ◽  
pp. 833-852 ◽  
Author(s):  
M Tardy ◽  
H Lapierre ◽  
D Bosch ◽  
A Cadoux ◽  
A Narros ◽  
...  

The Slide Mountain Terrane consists of Devonian to Permian siliceous and detrital sediments in which are interbedded basalts and dolerites. Locally, ultramafic cumulates intrude these sediments. The Slide Mountain Terrane is considered to represent a back-arc basin related to the Quesnellia Paleozoic arc-terrane. However, the Slide Mountain mafic volcanic rocks exposed in central British Colombia do not exhibit features of back-arc basin basalts (BABB) but those of mid-oceanic ridge (MORB) and oceanic island (OIB) basalts. The N-MORB-type volcanic rocks are characterized by light rare-earth element (LREE)-depleted patterns, La/Nb ratios ranging between 1 and 2. Moreover, their Nd and Pb isotopic compositions suggest that they derived from a depleted mantle source. The within-plate basalts differ from those of MORB affinity by LREE-enriched patterns; higher TiO2, Nb, Ta, and Th abundances; lower εNd values; and correlatively higher isotopic Pb ratios. The Nd and Pb isotopic compositions of the ultramafic cumulates are similar to those of MORB-type volcanic rocks. The correlations between εNd and incompatible elements suggest that part of the Slide Mountain volcanic rocks derive from the mixing of two mantle sources: a depleted N-MORB type and an enriched OIB type. This indicates that some volcanic rocks of the Slide Mountain basin likely developed from a ridge-centered or near-ridge hotspot. The activity of this hotspot is probably related to the worldwide important mantle plume activity that occurred at the end of Permian times, notably in Siberia.


1980 ◽  
Vol 47 (2) ◽  
pp. 272-278 ◽  
Author(s):  
David W. Muenow ◽  
Norman W.K. Liu ◽  
Michael O. Garcia ◽  
Andrew D. Saunders

2002 ◽  
Vol 39 (5) ◽  
pp. 749-764 ◽  
Author(s):  
Nicholas Culshaw ◽  
Peter Reynolds ◽  
Gavin Sinclair ◽  
Sandra Barr

We report amphibole and mica 40Ar/39Ar ages from the Makkovik Province. Amphibole ages from metamorphic rocks decrease towards the interior of the province, indicating a first-order pattern of monotonic cooling with progressive migration of the province into a more distal back-arc location. The amphibole data, in combination with muscovite ages, reveal a second-order pattern consisting of four stages corresponding to changing spatial and temporal configurations of plutonism and deformation. (1) The western Kaipokok domain cooled through muscovite closure by 1810 Ma, long after the cessation of arc magmatism. (2) The Kaipokok Bay shear zone, bounding the Kaipokok and Aillik domains, cooled through amphibole closure during 1805–1780 Ma, synchronous with emplacement of syn-tectonic granitoid plutons. (3) Between 1740 and 1700 Ma, greenschist-facies shearing occurred along the boundary between the Kaipokok domain and Nain Province synchronous with A-type plutonism and localized shearing in the western Kaipokok domain, cooling to muscovite closure temperatures in the Kaipokok Bay shear zone, and A-type plutonism and amphibole closure or resetting in the Aillik domain. (4) In the period 1650–1640 Ma, muscovite ages, an amphibole age from a shear zone, and resetting of plutonic amphibole indicate a thermal effect coinciding in part with Labradorian plutonism in the Aillik domain. Amphibole ages from dioritic sheets in the juvenile Aillik domain suggest emplacement between 1715 and 1685 Ma. Amphibole ages constrain crystallization of small mafic plutons in the Kaipokok domain (reworked Archean foreland) to be no younger than 1670–1660 Ma. These ages are the oldest yet obtained for Labradorian plutonism in the Makkovik Province.


2021 ◽  
Vol 57 ◽  
pp. 239-273
Author(s):  
Allan Ludman ◽  
Christopher McFarlane ◽  
Amber T.H. Whittaker

Volcanic rocks in the Miramichi inlier in Maine occur in two areas separated by the Bottle Lake plutonic complex: the Danforth segment (Stetson Mountain Formation) north of the complex and Greenfield segment to the south (Olamon Stream Formation). Both suites are dominantly pyroclastic, with abundant andesite, dacite, and rhyolite tuffs and subordinate lavas, breccias, and agglomerates. Rare basaltic tuffs and a small area of basaltic tuffs, agglomerates, and lavas are restricted to the Greenfield segment. U–Pb zircon geochronology dates Greenfield segment volcanism at ca. 469 Ma, the Floian–Dapingian boundary between the Lower and Middle Ordovician. Chemical analyses reveal a calc-alkaline suite erupted in a continental volcanic arc, either the Meductic or earliest Balmoral phase of Popelogan arc activity. The Maine Miramichi volcanic rocks are most likely correlative with the Meductic Group volcanic suite in west-central New Brunswick. Orogen-parallel lithologic and chemical variations from New Brunswick to east-central Maine may result from eruptions at different volcanic centers. The bimodal Poplar Mountain volcanic suite at the Maine–New Brunswick border is 10–20 myr younger than the Miramichi volcanic rocks and more likely an early phase of back-arc basin rifting than a late-stage Meductic phase event. Coeval calc-alkaline arc volcanism in the Miramichi, Weeksboro–Lunksoos Lake, and Munsungun Cambrian–Ordovician inliers in Maine is not consistent with tectonic models involving northwestward migration of arc volcanism. This >150 km span cannot be explained by a single east-facing subduction zone, suggesting more than one subduction zone/arc complex in the region.


1992 ◽  
Vol 29 (7) ◽  
pp. 1448-1458 ◽  
Author(s):  
M. R. Laflèche ◽  
C. Dupuy ◽  
J. Dostal

The late Archean Blake River Group volcanic sequence forms the uppermost part of the southern Abitibi greenstone belt in Quebec. The group is mainly composed of mid-ocean-ridge basalt (MORB)-like tholeiites that show a progressive change of several incompatible trace element ratios (e.g., Nb/Th, Nb/Ta, La/Yb, and Zr/Y) during differentiation. The compositional variations are inferred to be the result of fractional crystallization coupled with mixing–contamination of tholeiites by calc-alkaline magma which produced the mafic–intermediate lavas intercalated with the tholeiites in the uppermost part of the sequence. The MORB-like tholeiites were probably emplaced in a back-arc setting.


Sign in / Sign up

Export Citation Format

Share Document