MANIFESTATION OF THE PREDURALS DEPRESSION STRUCTURES IN THE MAGNETIC FIELD OF THE ARCTIC URALS

Author(s):  
Peter Martyshko
1976 ◽  
Vol 13 (6) ◽  
pp. 790-802 ◽  
Author(s):  
R. L. Coles ◽  
G. V. Haines ◽  
W. Hannaford

A contoured map of vertical magnetic field residuals (relative to the IGRF) over western Canada and adjacent Arctic regions has been produced by amalgamating new data with those from previous surveys. The measurements were made at altitudes between 3.5 and 5.5 km above sea level. The map shows the form of the magnetic field within the waveband 30 to 5000 km. A magnetic feature of several thousand kilometres wavelength dominates the map, and is probably due in major part to sources in the earth's core. Superimposed on this are several groups of anomalies which contain wavelengths of the order of a thousand kilometres. The patterns of the short wavelength anomalies provide a broad view of major structures and indicate several regimes of distinctive evolutionary development. Enhancement of viscous magnetization at elevated temperatures may account for the concentration of intense anomalies observed near the western edge of the craton.


2020 ◽  
Vol 84 ◽  
pp. 01001
Author(s):  
Valeriy Kramskiy ◽  
Ekaterina Samylovskaya ◽  
Stefano Maria Capilupi

The paper discusses Roald Amundsen’s discoveries in the sphere of knowledge about the Earth’s magnetic field, made during the Arctic expedition of 1903-1906. A historical overview of previous discoveries made by scientists in the process of studying Geomagnetism is given. The research is based on the study and analysis of R. Amundsen’s memoirs about the expedition. The authors consistently consider the stages of the expedition along the Northwest passage in 1903-1906 and its results. The significance of the geomagnetic characteristics obtained in this expedition is shown. Attention is paid to the phenomenon of magnetic poles drift, and the process of its discovery is described in detail. Amundsen’s discovery of magnetic drift gave an invaluable impetus for further Geomagnetism development, which is also briefly considered. Observations made by Roald Amundsen helped to take a new look at the existing scientific picture of the world, to challenge the traditional model of the Earth structure and to construct a new and, in many ways, revolutionary scheme. As a result of the research, the authors of the paper come to the conclusion that the expedition of 1903-1906 is one of the greatest scientific breakthroughs of that time, also in the sphere of Geophysics. Scientists processed the recorded characteristics of the magnetic field in the Arctic until the 30s of the 20th century. This huge flow of data allowed to supplement the existing maps with magnetic declination and inclination readings in the studied area, and thus to simplify further development of the Arctic region.


2013 ◽  
Vol 4 (1) ◽  
pp. 35-46
Author(s):  
O. M. Raspopov ◽  
S. N. Sokolov ◽  
I. M. Demina ◽  
R. Pellinen ◽  
A. A. Petrova

Abstract. In July of 1931, on the eve of International Polar Year II, an Arctic flight of the Graf Zeppelin rigid airship was organized. This flight was a realization of the idea of F. Nansen, who advocated the use of airships for the scientific exploration of the Arctic territories, which were poorly studied and hardly accessible at that time. The route of the airship flight was Berlin – Leningrad – Arkhangelsk – Franz Josef Land – Severnaya Zemlya – the Taimyr Peninsula – Novaya Zemlya – Arkhangelsk – Berlin. One of scientific goals of the expedition was to measure the H and D geomagnetic field components. Actually, the first aeromagnetic survey was carried out in the Arctic during the flight. After the expedition, only preliminary results of the geomagnetic measurements, in which an anomalous behavior of magnetic declination in the high-latitude part of the route was noted, were published. Our paper is concerned with the first aeromagnetic measurements in the Arctic and their analysis based on archival and modern data on the magnetic field in the Barents and Kara sea regions. It is shown that the magnetic field along the flight route had a complicated structure, which was not reflected in the magnetic charts of those times. The flight was very important for future development of aero- and ground-based magnetic surveys in the Arctic, showing new methods in such surveys.


1967 ◽  
Vol 31 ◽  
pp. 375-380
Author(s):  
H. C. van de Hulst

Various methods of observing the galactic magnetic field are reviewed, and their results summarized. There is fair agreement about the direction of the magnetic field in the solar neighbourhood:l= 50° to 80°; the strength of the field in the disk is of the order of 10-5gauss.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


Author(s):  
D. E. Speliotis

The interaction of electron beams with a large variety of materials for information storage has been the subject of numerous proposals and studies in the recent literature. The materials range from photographic to thermoplastic and magnetic, and the interactions with the electron beam for writing and reading the information utilize the energy, or the current, or even the magnetic field associated with the electron beam.


Author(s):  
S. Horiuchi ◽  
Y. Matsui

A new high-voltage electron microscope (H-1500) specially aiming at super-high-resolution (1.0 Å point-to-point resolution) is now installed in National Institute for Research in Inorganic Materials ( NIRIM ), in collaboration with Hitachi Ltd. The national budget of about 1 billion yen including that for a new building has been spent for the construction in the last two years (1988-1989). Here we introduce some essential characteristics of the microscope.(1) According to the analysis on the magnetic field in an electron lens, based on the finite-element-method, the spherical as well as chromatic aberration coefficients ( Cs and Cc ). which enables us to reach the resolving power of 1.0Å. have been estimated as a function of the accelerating As a result of the calculaton. it was noted that more than 1250 kV is needed even when we apply the highest level of the technology and materials available at present. On the other hand, we must consider the protection against the leakage of X-ray. We have then decided to set the conventional accelerating voltage at 1300 kV. However. the maximum accessible voltage is 1500 kV, which is practically important to realize higher voltage stabillity. At 1300 kV it is expected that Cs= 1.7 mm and Cc=3.4 mm with the attachment of the specimen holder, which tilts bi-axially in an angle of 35° ( Fig.1 ). In order to minimize the value of Cc a small tank is additionally placed inside the generator tank, which must serve to seal the magnetic field around the acceleration tube. An electron gun with LaB6 tip is used.


Sign in / Sign up

Export Citation Format

Share Document