ASSESSING HAZARDOUS GEOLOGICAL FEATURES FOR TUNNEL CONSTRUCTION BY MEANS OF GEOTECHNICAL AND GEOPHYSICAL METHODS

Author(s):  
Adrian Diaconu
2020 ◽  
Vol 25 (2) ◽  
pp. 189-198
Author(s):  
Lei Chen ◽  
Chao Fu ◽  
Xinji Xu ◽  
Lichao Nie

The seismic method is one of the main geophysical methods that are widely used to image the geology ahead of tunnels during tunnel construction. However, owing to the complex environment and limited observation aperture in a tunnel, symmetric false results (that appear in imaging results but not in the actual environment) frequently occur in imaging results. In a symmetric false reflection, false and true reflection points are axisymmetric around the tunnel axis. Such false results frequently cause errors in the interpretation of the geological conditions ahead of a tunnel face. To overcome this problem, a seismic method that uses adaptive polarization analysis was adopted to better image geological conditions. Based on an adaptive time window, the polarization characteristics of seismic signals were analyzed to calculate the main polarization direction. The symmetric false results in imaging results were suppressed by adopting a weighting coefficient based on the angle between the main polarization direction and ray direction. Numerical simulations revealed the superiority of the method when applied to synthetic data processing. Moreover, the method was applied to a diversion tunnel. The method successfully identified the fracture zones ahead of the tunnel face, thus significantly enhancing the safety of tunnel construction.


Warta Geologi ◽  
2021 ◽  
Vol 47 (3) ◽  
pp. 199-203
Author(s):  
Nik Adib Yaaziz ◽  
◽  
Mohd Hariri Arifin ◽  

Geophysics play a vital role in the constructions of any major manmade structures in the world. One of those being the tunnels. In depth understanding of geophysical methods and a lot of information are needed in order to design a tunnel construction project. Comprehensive investigation on the ground condition has to be done before the field preparation study that will determine the stand-up time and the groundwater condition that may disrupt the tunnel construction. For tunnel stability assessment, an integration of geophysical methods is a must in order to obtain the most accurate results. Satellite imaging interpretation emphasizes on the structural tracing of negative lineament while field mapping emphasizes on location of underground seepage and major tectonic structures such as faults, joints and shear zones. Geoelectrical resistivity tomography survey is able to identify the differences in resistivity of Earth’s materials based on the water content inside of them. The best course of remediation could only be chosen once the output from all these studies are made available.


2021 ◽  
Vol 82 (3) ◽  
pp. 91-93
Author(s):  
Dian Strahilov ◽  
Ivan Dimitrov

The structural geological features defining the discontinuity network in metamorphic rocks hosting railway tunnels are described. Discussion on the faults, joints, lineation and stresses found from fault population is presented. It is demonstrated that the formation of some brittle joints is related to the ductile stretching lineation. The geotechnical situation for the tunnel construction is complicated and requires reassessment of the design solutions in order to accommodate substantial lateral forces and prevent shear of the tubes.


2019 ◽  
Vol 24 (4) ◽  
pp. 525-536
Author(s):  
Jun Zhang ◽  
Shengdong Liu ◽  
Qinghua Chen ◽  
Bo Wang ◽  
Chuan Ren

With the significant development of China's metro construction, the development of urban underground karst poses a serious threat to related tunnel construction and public safety, with frequent occurrences of mud and water inrushes during tunnel construction and urban ground subsidence events. Because of the complex, urban, and shallow geological conditions and construction environments, conventional geophysical methods cannot meet the requirements for high-precision detection of small-scale and inhomogeneous complex geological bodies. Based on numerical simulation, herein we comprehensively applied both cross-borehole electrical resistivity tomography (ERT) and cross-borehole seismic computed tomography (CT) to urban underground karst surveys of the Hangzhou-Fuyang intercity railway. The results showed that: 1) under limited urban construction conditions, the use of advanced geophysical monitoring equipment greatly improved construction efficiency; 2) utilizing drilling geological results to calibrate the abnormal geophysical field attribute parameters (including wave velocity and resistivity) improved the accuracy of karst exploration and reduce defective geophysical multi-explanation effects; 3) applying the joint comparative explanation of both velocity and resistivity profiles can distinguish and explain karst and fracture development zones; 4) 550 pairs of velocity and resistivity profiles were obtained which revealed 258 karst cave anomalies and 5 fracture development zones which integrated detection accuracy exceeded the 1 m level. Thus, the high-precision joint cross-borehole tomography technology was shown to be useful for guiding intercity railway construction.


Author(s):  
Akindeji Fajana ◽  
Olayiwola Olaseeni ◽  
Odunayo Bamidele ◽  
Oladunjoye Olabode

A combined geophysical methods involving very low frequency-electromagnetic, electrical resistivity, magnetics prospecting method and geotechnical investigations were used in delineating the causes of cracks on the buildings of Faculty of Social Science and Humanities, Federal University Oye- Ekiti. Five (5) Very Low Frequency-Electromagnetic traverses, Twenty-one (21) Vertical Electrical Soundings and three (3) magnetic profiles were occupied and investigated around the distress building. Two (2) locations were also occupied for geotechnical investigations. Three major layers were delineated in the study area which includes the topsoil, weathered/fractured layer and fresh basement. The VES curve types obtained were A, H, K and Q curves. The buildings were found to be situated within the area of a fairly high concentration of fractures that can aid subsidence in the area and relatively low resistivity zones typical of incompetent clay formation. The geotechnical results also show that the soil has relatively high clay content. Based on the consistency limits. The soils within the area is classified as medium plasticity, hence, the soils are expected to exhibit medium swelling potential. It can however be concluded that the subsoils on or within which buildings are founded within the study area are not competent. From the result, the building failure observe as cracks and foundation subsidence may have been caused by the foundation soils that made up of incompetent materials (clay) which could compress on imposing loads by differential settlement. It is noteworthy that geological features such as fractures/faults delineated within the bedrock is also inimical to the building foundation.


Georesursy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 78-85
Author(s):  
Vadim A. Davydov

A brief review is carried out of the previous study about the spectral ratios of horizontal and vertical components of microseismic oscillations displacement. The basic principles of resonant boundaries allocation and the construction of deep sections based on the H/V relations (ellipticity) are considered. A description of the equipment used, the method of recording and processing microseismic noise are presented. The main goal of the research work is to clarify the nature of the connection between the ellipticity of microseisms with geological features and the correctness of constructing deep sections based on them. The initial data are the amplitude spectra of the components of microseismic signal, obtained using the fast Fourier transformation. In the course of experimental work it was found that the spectral relations retain their characteristic features regardless of the azimuth of observations. A number of practical examples compare microseismic sections with results from other geophysical methods and drilling information. The results obtained indicate the complex nature of the ellipticity of microseismic noise under different conditions, however, they make it possible to determine the main interfaces between the upper part of the geological section. Resonant boundaries emitted by microtremor are often located near refractive seismic boundaries. This is consistent with the theory that resonance effects occur at the interface between two media with a high contrast of acoustic impedance.


2020 ◽  
Vol 25 (3) ◽  
pp. 415-423
Author(s):  
Ahmed Lachhab ◽  
El Mehdi Benyassine ◽  
Mohamed Rouai ◽  
Abdelilah Dekayir ◽  
Jean C. Parisot ◽  
...  

The tailings of Zeida's abandoned mine are found near the city of Midelt, in the middle of the high Moulouya watershed between the Middle and the High Atlas of Morocco. The tailings occupy an area of about 100 ha and are stored either in large mining pit lakes with clay-marl substratum or directly on a heavily fractured granite bedrock. The high contents of lead and arsenic in these tailings have transformed them into sources of pollution that disperse by wind, runoff, and seepage to the aquifer through faults and fractures. In this work, the main goal is to identify the pathways of contaminated water with heavy metals and arsenic to the local aquifers, water ponds, and Moulouya River. For this reason, geophysical surveys including electrical resistivity tomography (ERT), seismic refraction tomography (SRT) and very low-frequency electromagnetic (VLF-EM) methods were carried out over the tailings, and directly on the substratum outside the tailings. The result obtained from combining these methods has shown that pollutants were funneled through fractures, faults, and subsurface paleochannels and contaminated the hydrological system connecting groundwater, ponds, and the river. The ERT profiles have successfully shown the location of fractures, some of which extend throughout the upper formation to depths reaching the granite. The ERT was not successful in identifying fractures directly beneath the tailings due to their low resistivity which inhibits electrical current from propagating deeper. The seismic refraction surveys have provided valuable details on the local geology, and clearly identified the thickness of the tailings and explicitly marked the boundary between the Triassic formation and the granite. It also aided in the identification of paleochannels. The tailings materials were easily identified by both their low resistivity and low P-wave velocity values. Also, both resistivity and seismic velocity values rapidly increased beneath the tailings due to the compaction of the material and lack of moisture and have proven to be effective in identifying the upper limit of the granite. Faults were found to lie along the bottom of paleochannels, which suggest that the locations of these channels were caused by these same faults. The VLF-EM surveys have shown tilt angle anomalies over fractured areas which were also evinced by low resistivity area in ERT profiles. Finally, this study showed that the three geophysical methods were complementary and in good agreement in revealing the pathways of contamination from the tailings to the local aquifer, nearby ponds and Moulouya River.


Sign in / Sign up

Export Citation Format

Share Document