Comparison of the structure and topography of selected low friction thin films

Author(s):  
A. Paradecka ◽  
K. Lukaszkowicz ◽  
A. Kříž ◽  
R. Potempa

Purpose: The purpose of this article is to characterize and compare the structure, mechanical and tribological properties of low friction DLC and TiC thin films deposited on the austenitic steel X6CrNiMoTi17-12-2 substrate. Design/methodology/approach: In the research, the samples of the DLC and TiC thin films with transition hard AlCrN interlayer deposited by magnetron sputtering and PACVD technology respectively were used. Observations of topography were made using a scanning electron microscope (SEM), and the atomic force microscope (AFM). The structure of samples was performed using a Raman microscope. The microhardness tests of thin films were made by Oliver & Phare method. Findings: Studies confirmed that the combination of research SEM and AFM provide crucial information on the structure and topography of the samples. It was possible to obtain information about the topography parameters and allow for the assessment of morphology and quality of the tested coatings. Study of the structure using Raman spectroscopy revealed the band corresponding to the DLC and TiC thin films. Practical implications: The current application areas for low friction thin films are constantly growing, and the intensive development of techniques requires the use of new technologies what leads to the production of the specific surface layer and a thorough examination. Originality/value: Growing area of low friction coatings with specific properties requires the use of specialized tools aimed at assessing the topography and structures which are responsible for tribological properties.

Author(s):  
A. Paradecka ◽  
K. Lukaszkowicz

Purpose: The purpose of this article is to characterize and compare the microstructure and tribological properties of low friction DLC:Ti and MoS2 thin films deposited on the austenitic steel X6CrNiMoTi17-12-2 substrate. Design/methodology/approach: In the research, the samples of the DLC:Ti and MoS2 thin films deposited by PACVD technology and magnetron sputtering method respectively were used. Observations of topography were made using atomic force microscope (AFM). Adhesion of the coating to the substrate material was verified by the scratch test. The friction coefficient and wear rate of the coating were determined in the ball-on-disc test. Findings: AFM as well as adhesion and friction coefficient tests confirmed low friction nature of MoS2 and DLC:Ti coatings. During the research information on the behaviour of coatings under tribological load was obtained. The investigated coating reveals high wear resistance and good adhesion to the substrate. Practical implications: The area of testing of low-friction thin films is widely studied due to their practical application. Intensive development of new technologies requires the introduction of corresponding layers of both full protective functions and reducing friction. Originality/value: Growing area of low-friction coatings with specific properties requires thorough tribological and topographical research, which is closely related to these properties.


2019 ◽  
Vol 26 (1) ◽  
pp. 402-411 ◽  
Author(s):  
Zhiwei Wu ◽  
Yan Wang ◽  
Sihao Li ◽  
Xiaoyong Wang ◽  
Zhaojun Xu ◽  
...  

AbstractBCN coatings with different chemical compositions were prepared using RF magnetron sputtering via adjusting N2 flow. The influence of N2 flow on the bonding structure, mechanical and tribological properties of coating was studied. The structural analysis indicated the coexistence of B-N, B-C, and N-C bonds, suggesting the formation of a ternary BCN hybridization. The maximum Vickers hardness of 1614.7 HV was obtained at the low N2 flow (5 sccm), whereas the adhesion strength of BCN coatings on 316L stainless steel was improved with an increase of N2 flow. The friction behavior of BCN coatings sliding against different materials (acerbic, beech and lauan wood) was performed using ball-on-disk tribo-meter in air. The low friction coefficient was easier to obtain as sliding against hardwood i.e. acerbic balls. BCN-5 and BCN-10 coatings presented better wear resistance regardless of softwood or hardwood, whilst other two coatings were more suitable for mating softwood i.e. beech and lauan.


Author(s):  
Carolina J. Diliegros-Godines ◽  
Francisco Javier Flores-Ruiz ◽  
Rebeca Castanedo-Pérez ◽  
Gerardo Torres-Delgado ◽  
Esteban Broitman

2019 ◽  
Vol 375 ◽  
pp. 589-599 ◽  
Author(s):  
Hang Li ◽  
Jianliang Li ◽  
Zhaoli Liu ◽  
Jiewen Huang ◽  
Jian Kong ◽  
...  

2014 ◽  
Vol 74 (1) ◽  
pp. 114-120 ◽  
Author(s):  
C. J. Diliegros-Godines ◽  
F. J. Flores-Ruiz ◽  
R. Castanedo-Pérez ◽  
G. Torres-Delgado ◽  
F. J. Espinoza-Beltrán ◽  
...  

2015 ◽  
Vol 742 ◽  
pp. 773-777
Author(s):  
Qun Feng Yang ◽  
Jian Yi Zheng ◽  
Jun Qing Wang ◽  
Jun Hui Lin ◽  
Xue Nan Zhao ◽  
...  

The purpose of this work is to study the mechanical characteristics of the silicon nitride(SiNx) thin films prepared by PECVD technique, some researches as follows were carried out. First, the SiNx thin films were deposited on the two different substrates. Then, the atomic force microscope (AFM) was adopted to test the surface quality of the SiNxfilms, and the scanning electron microscope (SEM) was used to test the section morphology of the SiNxthin films. Finally, the rotating beam structures was applied to measure the residual stress in the SiNx films. The SiNxthin films with low stress can be fabricated through PECVD, in which the surface roughness values(Ra) are 1.261 nm and 2.383nm, and the residual stress is 43.5 kPa. Therefore, the SiNxthin films deposited by PECVD are suitable for the preparation of device dielectric films in MEMS.


2015 ◽  
Vol 30 (S1) ◽  
pp. S16-S24 ◽  
Author(s):  
Dieter Jehnichen ◽  
Doris Pospiech ◽  
Peter Friedel ◽  
Guping He ◽  
Alessandro Sepe ◽  
...  

Diblock copolymers (BCPs) show phase separation on mesoscopic length scales and form ordered morphologies in both bulk and thin films, the latter resulting in nanostructured surfaces. Morphologies in thin films are strongly influenced by film parameters, the ratio of film thickness and bulk domain spacing. Laterally structured polymer surfaces may serve as templates for controlled assembly of nanoparticles (NPs). We investigated the BCP of poly(n-pentyl methacrylate) and poly(methyl methacrylate) which show bulk morphologies of stacked lamellae or hexagonally packed cylinders. Thin films were investigated by atomic force microscopy and grazing-incidence small-angle X-ray scattering. For film thicknesses f well below dbulk, standing cylinder morphologies were observed in appropriate molar ratios, while film thicknesses around and larger than dbulk resulted in cylinders arranged parallel to surface. To alter and/or improve the morphology also in presence of different NPs (e.g., silica, gold), solvent vapour annealing (SVA) was applied. The BCP morphology usually remains unchanged but periodicities change depending on type and amount of incorporated NPs. It was found that silica clusters enlarge lateral distances of cylinders, whereas Au NPs reduce it. The effect of SVA is weak. The quality of morphology is slightly improved by SVA and lateral distances remain constant or are slightly reduced.


Sign in / Sign up

Export Citation Format

Share Document