scholarly journals Traffic infrastructure in mining areas (selected problems)

2019 ◽  
Vol 193 (3) ◽  
pp. 558-578
Author(s):  
Andrzej Surowiecki ◽  
Piotr Saska ◽  
Krzysztof Ksiądzyna ◽  
Jacek Ryczyński

The article discusses the issues of safety of operation of road and rail transport infrastructure objects in mining areas. In particular, the fol-lowing issues were discussed: the general characteristics of the mining deformations of the rock mass and the terrain surface, the impact of continuous and discontinuous deformations on the safety of the opera-tion of land transport infrastructure facilities and reinforcements of land transport infrastructure structures in mining areas. Examples of land transport structure reinforcements situated within the reach of mining influences are given.

2018 ◽  
Vol 66 ◽  
pp. 01001 ◽  
Author(s):  
Zenon Pilecki

The shallow historic exploitation of Zn-Pb/Fe ore deposits as well as hard coal has generated many discontinuous deformations on the terrain surface in the Upper Silesian Coal Basin/Poland. Discontinuous deformations occur in different forms as sinkholes, synclines, cracks, faults or ditches. The basic cause of their occurrence is the presence of void and loosened zones in the shallow subsurface. If the appropriate conditions arise, the sinkhole process begins to move upwards and may cause a discontinuous deformation on the terrain surface. Typically, geophysical methods are used for void and loosened zone identification. The most effective methods are gravimetric, seismic, electric resistivity and ground penetrating radar (GPR). Geophysical testing, requires distinct changes in the physical properties in the rock mass. The identified geophysical anomalies should be verified by control borehole and borehole tests to confirm the presence of the void and loosened zones in the rock mass. The results of control drilling and borehole tests determine the need to apply treatment works. In order to assess the threat of the occurrence of discontinuous deformations in the areas of historical shallow mining in Upper Silesia, a classification system based on geophysical tests has also been developed.


2020 ◽  
Author(s):  
Dariusz Głąbicki ◽  
Anna Kopeć ◽  
Wojciech Milczarek ◽  
Natalia Bugajska ◽  
Karolina Owczarz

<p>Human activity, in particular mining operations are the cause of terrain changes, manifesting on the terrain surface in form of subsidence troughs. Presence of subsidence troughs in inhabited areas may be the cause of significant damage to the structure of buildings, roads and other man-made objects. Both vertical and horizontal terrain displacements occuring inside the trough could be the reason for deterioration of mentioned objects. Hence the need to measure the impact of mining activity on the terrain surface. Current measurement techniques used to determine terrain displacements include GNSS, leveling and SAR interferometry. One of the limitations of interferometric measurements is that displacement values are in the satellites Line-of-Sight (LOS). The fact that the values are only quasi-vertical causes an ambiguity when it comes to determining whether the dominating component of displacement is vertical or horizontal. Projecting the one-dimentional LOS motion to the vertical direction using only the incidence angle can cause significant errors if the magnitude of horizontal motion is considerable. However, the specific 3-dimentional diplacement components can be derived using different acquisition geometries. In order to determine all 3 components (horizontal North-South, East-West and vertical Up-Down), 3 different viewing geometries have to be used so that the equation can be solved. However, the North-South component can be neglected due to low sensitivity of Sentinel-1 SAR instrument to displacement in that direction. Following that, 2 different viewing geometries can be sufficient to derive the East-West and vertical components.</p><p>The aim of the study is to determine how mining activity affects the surface in terms of both horizontal and vertical displacements. Radar pairs from Sentinel-1 ascending and descending orbit were used to create interferograms, based on which LOS displacement fields were calculated. The North-South and East-West components of displacement were solved through the inversion of the linear equation system based on incidence angles, headings and LOS displacements of ascending and descending radar pairs.</p><p>The horizontal and vertical components were determined for differential interferograms obtained with the DInSAR method using Sentinel-1 imagery, as well as for time series displacement fields derived from the Small Baseline Subset (SBAS) approach over selected mining areas in Poland. The results have shown that data from ascending and descending orbits can be successfully merged in order to obtain both the horizontal (East-West) and vertical components of displacement over mining areas. Obtained values of displacements from both DInSAR and SBAS have confirmed that areas affected by mining activity are under the influence of changes in height, as well as shifts in horizontal direction. Thus it is important to take into consideration multiple acquisition geometries when it comes to studying deformations over mining areas.</p>


2016 ◽  
Vol 2016 (4) ◽  
pp. 13-21
Author(s):  
Krzysztof Stypuła ◽  
Krzysztof Kozioł

The work addresses the problem of environmental protection against vibration caused by rail transport considered in the stage of preparation and design of rail transport infrastructure. In the example the subway in Warsaw, guidelines and standards for assessing the impact of vibration on buildings and people in these buildings were indicated. We presented procedures for protection against vibrations in the case of the rail transport and discussed kinds of analyses of the impact of vibration on structures of buildings and people staying in them. We also described the design procedure of vibroisolation in the structure of the rail track.


2020 ◽  
Vol 19 (6) ◽  
pp. 1015-1034
Author(s):  
O.Yu. Patrakeeva

Subject. The paper considers national projects in the field of transport infrastructure, i.e. Safe and High-quality Roads and Comprehensive Plan for Modernization and Expansion of Trunk Infrastructure, and the specifics of their implementation in the Rostov Oblast. Objectives. The aim is to conduct a statistical assessment of the impact of transport infrastructure on the region’s economic performance and define prospects for and risks of the implementation of national infrastructure projects in conditions of a shrinking economy. Methods. I use available statistics and apply methods and approaches with time-series data, namely stationarity and cointegration tests, vector autoregression models. Results. The level of economic development has an impact on transport infrastructure in the short run. However, the mutual influence has not been statistically confirmed. The paper revealed that investments in the sphere of transport reduce risk of accidents on the roads of the Rostov Oblast. Improving the quality of roads with high traffic flow by reducing investments in the maintenance of subsidiary roads enables to decrease accident rate on the whole. Conclusions. In conditions of economy shrinking caused by the complex epidemiological situation and measures aimed at minimizing the spread of coronavirus, it is crucial to create a solid foundation for further economic recovery. At the government level, it is decided to continue implementing national projects as significant tools for recovery growth.


2021 ◽  
Vol 37 ◽  
pp. 205-215
Author(s):  
Heng Chen ◽  
Hongmei Cheng ◽  
Aibin Xu ◽  
Yi Xue ◽  
Weihong Peng

ABSTRACT The fracture field of coal and rock mass is the main channel for gas migration and accumulation. Exploring the evolution law of fracture field of coal and rock mass under the condition of drilling and slitting construction has important theoretical significance for guiding efficient gas drainage. The generation and evolution process of coal and rock fissures is also the development and accumulation process of its damage. Therefore, based on damage mechanics and finite element theory, the mathematical model is established. The damage variable of coal mass is defined by effective strain, the elastoplastic damage constitutive equation is established and the secondary development of finite element program is completed by FORTRAN language. Using this program, the numerical simulation of drilling and slitting construction of the 15-14120 mining face of Pingdingshan No. 8 Mine is carried out, and the effects of different single borehole diameters, different kerf widths and different kerf heights on the distribution area of surrounding coal fracture field and the degree of damage are studied quantitatively. These provide a theoretical basis for the reasonable determination of the slitting and drilling arrangement parameters at the engineering site.


2011 ◽  
Vol 3 (3) ◽  
Author(s):  
Lorant David ◽  
Zoltan Ilyes ◽  
Zoltan Baros

AbstractAlterations in topography due to the construction of transport infrastructure and industrial development are the results of rather complex processes. The impact of transport constructions upsetting (topographic) equilibrium is manifested in a relatively narrow strip, and, mostly, through producing abnormally steep slopes, in reducing relief stability. The earthworks for transport routes are themselves also landscape-forming factors whereas in the case of industrial developments, planation is usually mentioned. Topographic changes related to the construction of transport infrastructure and industrial development are discussed historically in this chapter. Among the direct impacts of the first are those related to the construction of Roman and Medieval roads, hollow roads in loess, public roads, motorways, railways, canals, tunnels and airports; while of the second are those of early mining and metallurgy, cellars, sludge reservoirs, slag cones and fly-ash reservoirs, cooling ponds, industrial parks, shopping centres and waste disposal sites. Of the indirect ones, an introduction is given to impacts of surface sealing, changes in runoff, the ‘waterfall effect,’ as well as to environmental impacts under permafrost conditions.


2021 ◽  
Vol 2021 (23) ◽  
pp. 237-250
Author(s):  
Anatolii Morozov ◽  
◽  
Tetiana Morozova ◽  
Inessa Rutkovska ◽  
◽  
...  

Introduction.The main environmental risks posed by roads are population depletion (deaths on roads) and barrier effects (habitat fragmentation). Barrier effects - animals avoid crossing roads, which leads to a decrease in the size and quality of habitat, optimal population size, reduced ability to find food and partner, increased genetic structuring and local extinction (Forman et al. 2003; Andrews et al. 2015; van der Ree et al. 2015). These risks against the background of other stressors, in particular the presence of invasive species, pollution, pesticide use, climate change, plant and animal diseases, may threaten the survival of populations.This issue is especially relevant for herpetofauna due to their biological characteristics. In particular, reptiles and amphibians move slowly, are too small (for drivers to see), do not avoid roads, and in cold periods roads attract amphibians (thermoregulation) because the coating absorbs and retains heat (Case and Fisher 2001; Jochimsen et al. 2004).The principle of ensuring ecological continuity is to identify priority efforts to mitigate environmental risks for animals and reduce the negative impact of the transport complex as a spatial barrier and source of pollution by introducing a number of technical means (eco-crossings, screens, embankments, landscaping). As it is not possible to change the environmental risks on all roads and for all species at present, it is necessary to identify the most vulnerable species, assess the risks to populations and the need for mitigation based on analysis of road density and traffic intensity.Problem Statement. With the advent of land transport there was a progressive environmental problem - the transformation of landscapes, it first appeared in countries with developed road infrastructure in Western Europe and the United States, and quickly spread around the globe (Ellenberg, et al., 1981; Fetisov, 1999; Zagorodnyuk, 2006, Ilyukh, Khokhlov, 2012). Numerous publications by both foreign and domestic authors are devoted to the study of the impact of transport infrastructure. Special attention of European authors is paid to the study of the phenomenon of fragmentation of natural ecosystems. In Europe, there is a network of experts and institutions of IENE, which is studying the possibility of implementing preventive measures for landscape fragmentation, promotes the development of transport infrastructure in accordance with environmental requirements, by creating a safe, environmentally sustainable European transport infrastructure.The ecological trail of the road network significantly exceeds its length (Vozniuk, 2014). This is due to the effects of, in particular, mortality on the roads of mammals, reptiles, reptiles (Forman et al. 2003), landscape fragmentation (roads divide the area into isolated areas, with low populations (sometimes below the minimum), so such populations lose genetic diversity and may become extinct locally), the loss of habitats of species and a decrease in the level of connectivity. In addition to these obvious effects, noise and vibration pollution are added, which inhibit the ability of reptiles, birds and mammals to detect prey or avoid predators (Forman et al. 2003), disturbed light regime (Rich and Longcore 2006). Roads contribute to the development of soil erosion processes, the spread of invasive and introduced species (300-800 seeds/m2 per year are transported to roadside ecotones by vehicles (Von der Lippe and Kowarik 2007), which contributes to the formation of local pseudo-populations), create obstacles and sources. (Forman et al. 2003).Purpose. Substantiation of the principle of ecological continuity regarding the negative impact of transport infrastructure on natural ecosystems and search for possible ways to minimize and prevent such impact.Materials and methods. The main research methods are the application of theoretical general scientific approaches to study: analysis and synthesis of international and domestic scientific and theoretical works, EU documentation (charters, design requirements), Ukrainian legal framework, literature sources; collection and analysis of statistical data to identify the dangers of the impact of road infrastructure on biodiversity and determine the value of the natural landscape.Results. The result is an analysis of the scientific literature on the negative impact of transport infrastructure on animals, systematization of the main impacts for the preparation of methodological documents for organizations planning and designing transport infrastructure in Ukraine to reduce the negative impact.Conclusions. The principle of ensuring ecological continuity is to minimize the negative consequences for the environment. In particular, by leveling the spatial barrier of the public highway. When laying a road through natural ecosystems, it is necessary to build transitions and passages for animals. In this case, their density and type must correspond to the natural rank of the territory. The construction of crossings for animals should be mandatory for all types of roads that cross ecological corridors. This is especially true for smaller roads, completely devoid of any transitions for animals, noise shields (on such roads are more likely to hit animals). An important point is the need to plan preventive methods at the planning stage of road construction. The analysis of the European experience shows that the negative impact of transport infrastructure on biota can be solved by consolidating the efforts of road transport specialists and specialists in the field of nature protection.Keywords:motor road,wildlife crossing, biodiversity, road infrastructure, ecological continuity


2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


Author(s):  
E Freiberg ◽  
E Bellendir ◽  
V Golitsyn ◽  
N Ablyamitov ◽  
E Cherkez ◽  
...  

Transport ◽  
2021 ◽  
Vol 36 (4) ◽  
pp. 354-363
Author(s):  
Anna Borucka ◽  
Dariusz Mazurkiewicz ◽  
Eliza Łagowska

Effective planning and optimization of rail transport operations depends on effective and reliable forecasting of demand. The results of transport performance forecasts usually differ from measured values because the mathematical models used are inadequate. In response to this applicative need, we report the results of a study whose goal was to develop, on the basis of historical data, an effective mathematical model of rail passenger transport performance that would allow to make reliable forecasts of future demand for this service. Several models dedicated to this type of empirical data were proposed and selection criteria were established. The models used in the study are: the seasonal naive model, the Exponential Smoothing (ETS) model, the exponential smoothing state space model with Box–Cox transformation, ARMA errors, trigonometric trend and seasonal components (TBATS) model, and the AutoRegressive Integrated Moving Average (ARIMA) model. The proposed time series identification and forecasting methods are dedicated to the processing of time series data with trend and seasonality. Then, the best model was identified and its accuracy and effectiveness were assessed. It was noticed that investigated time series is characterized by strong seasonality and an upward trend. This information is important for planning a development strategy for rail passenger transport, because it shows that additional investments and engagement in the development of both transport infrastructure and superstructure are required to meet the existing demand. Finally, a forecast of transport performance in sequential periods of time was presented. Such forecast may significantly improve the system of scheduling train journeys and determining the level of demand for rolling stock depending on the season and the annual rise in passenger numbers, increasing the effectiveness of management of rail transport.


Sign in / Sign up

Export Citation Format

Share Document