Modelling study of flue gas flow pattern with pressure, amount and shape variation catalytic converter

2020 ◽  
Vol 1 (103) ◽  
pp. 5-17
Author(s):  
A. Ghofur ◽  
H. Isworo ◽  
R. Subagyo ◽  
M. Tamjidillah ◽  
R. Siswanto ◽  
...  

Purpose: The purpose of this study is to analyse the modelling of exhaust gas flow patterns with variations in pressure, number, and shape of filters on the catalytic converter. Design/methodology/approach: The research method used is a simulation using ANSYS, which starts by creating a converter catalytic model with pressure variations: (0.5-1.5 atm), number of filters: (2-5), and the form of filter-cut/filter-not-cut. Findings: The decrease in velocity is caused by non-uniform velocity in the exhaust gas flow that occurs when passing through a bend in the filter-cut that serves as a directional flow to create turbulence. Filter-cut type tends to have fluctuating pressure, turbulence flow pattern shape so that contact between filter and exhaust gas is more effective. Based on the analysis of flow patterns, the speed and pressure of the 5 filter-not-cut design at a pressure of 0.5 are the best, while at pressure (1-1.5 atm) the type 5 filter-cut is the best. Research limitations/implications: This study is limited to filter-not-cut and filter-cut types with variations in the number of filters: 2, 3, 4, and 5, and the inlet pressure between 0.5-1 atm. Practical implications: The practical implications of this study are to find a catalytic converter design that has advantages in the effectiveness of exhaust gas absorption. Originality/value: The results show that the filter-not-cut and filter-cut types have the best effectiveness in the number of 5 filters. Filter-not-cut at the pressure of 0.5 atm and filter-cut at pressure (1-1.5 atm).

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Rui Shen ◽  
Zhiming Hu ◽  
Xianggang Duan ◽  
Wei Sun ◽  
Wei Xiong ◽  
...  

Shale gas reservoirs have pores of various sizes, in which gas flows in different patterns. The coexistence of multiple gas flow patterns is common. In order to quantitatively characterize the flow pattern in the process of shale gas depletion development, a physical simulation experiment of shale gas depletion development was designed, and a high-pressure on-line NMR analysis method of gas flow pattern in this process was proposed. The signal amplitudes of methane in pores of various sizes at different pressure levels were calculated according to the conversion relationship between the NMR T 2 relaxation time and pore radius, and then, the flow patterns of methane in pores of various sizes under different pore pressure conditions were analyzed as per the flow pattern determination criteria. It is found that there are three flow patterns in the process of shale gas depletion development, i.e., continuous medium flow, slip flow, and transitional flow, which account for 73.5%, 25.8%, and 0.7% of total gas flow, respectively. When the pore pressure is high, the continuous medium flow is dominant. With the gas production in shale reservoir, the pore pressure decreases, the Knudsen number increases, and the pore size range of slip flow zone and transitional flow zone expands. When the reservoir pressure is higher than the critical desorption pressure, the adsorbed gas is not desorbed intensively, and the produced gas is mainly free gas. When the reservoir pressure is lower than the critical desorption pressure, the adsorbed gas is gradually desorbed, and the proportion of desorbed gas in the produced gas gradually increases.


Author(s):  
Zhenqiang Xie ◽  
Xuewen Cao ◽  
Fachun Liang ◽  
Jun Zhang

Abstract The problem of accumulated liquid is very common in wet gas gathering pipelines which varies with the topography, this phenomenon is much more serious especially in upward inclined pipelines. The existence of accumulated liquid at the bottom of the pipeline would decrease the area of the cross section that gas flows through. This makes the gas velocity fluctuate unpredictably and even results in shocks and blocks in pipelines which may cause danger in the safety management of oil and gas production. Swirl tool is a kind of rigid tool which can transfer different flow patterns to a flow pattern similar to annular flow and it has been successfully used to exhaust accumulated liquid in oil fields. However, the mechanism of swirling flow generation in a swirl tool is not fully understood and few researchers have explained how the annular-similar flow decays. In this paper, the formation mechanism of swirling flow in a swirl tool is analyzed using a physical method. The flow pattern transfer procedure and distribution of gas and liquid in the cross section of the pipeline in the swirl tool is simulated with FLUENT (a commercial CFD code). Following the swirling flow formation analysis, the decay of the annular-similar flow from the outlet of the swirl tool is also simulated with FLUENT (a commercial CFD code). Also, the effects of different superficial gas velocities and different liquid rates on the decay of the annular-similar flow are studied with the swirl tool fixed at the bottom of the upward inclined pipeline. The results show that the formation of swirling flow in a swirl tool is mostly affected by the geometric structure of the swirl tool. The centrifugal force is the main force which transfers different flow patterns to a flow pattern similar to annular flow. The centrifugal force that acts on liquid is larger than that of gas since the density of the liquid is much bigger than gas. The annular-similar flow starts to take shape in the swirl tool after the first thread pitch, but the annular-similar flow is nonuniform. After about three thread pitches, the annular-similar flow becomes uniform with liquid surrounding the inner wall of the pipe and gas flowing in the core region of the pipe. The distance of the annular-similar flow sustains longer when the superficial gas velocity increases which means the decay of the swirling flow is slower. Since sufficient liquid rate is critical to maintain annular-similar flow after the tool when the gas flow rate is fixed, the distance of the annular-similar flow goes longer if there is a little increase in liquid rate.


Author(s):  
Wenqi Zhong ◽  
Mingyao Zhang ◽  
Baosheng Jin ◽  
Rui Xiao

Steady-state tracer gas measurements were carried out to study the gas mixing behaviors in a spout-fluid bed with a cross section of 0.3 m x 0.03 m and height of 2 m. Two different tracer gases were simultaneously injected, one was injected into the spouting gas flow and the other was injected into the fluidizing gas flow. Radial tracer gas concentrations at various bed elevations under different flow patterns were measured. The mechanism of gas mixing was discussed based on the racer gas concentrations and the flow patterns recorded by a high-resolution digital CCD camera. It was found that gas mixing in spout-fluid beds was due to both convection and dispersion. A three-region mixing model was developed to describe the gas mixing in the spout-fluid bed. The spout jet region and the boundary region were modeled with a mass transfer model; the annular region was modeled with a dispersion model. Effects of spouting gas and fluidizing gas flow rate on the gas exchange between the spout jet and the annular dense region, and the gas dispersion in the annular dense region were examined with flow patterns. The results showed that increase in spouting gas velocity and fluidizing gas flow rate could both promote the gas mixing in spout-fluid beds. The gas-solid flow pattern transited from internal jet to spouting to spout-fluidizing, and the gases were better mixed. But the gases became poorly mixed when the flow pattern transited from stable flow to instable flow.


1993 ◽  
Vol 07 (09n10) ◽  
pp. 1889-1898 ◽  
Author(s):  
T. TANAKA ◽  
T. KAWAGUCHI ◽  
Y. TSUJI

The flow patterns in two-dimensional gas fluidized bed were simulated numerically by the Distinct Element Method, Gas is issued through the entire width of the base with uniform velocity. Several flow patterns, such as slugging and bubbling, are observed in the results. As the gas flow rate increases, the flow pattern changes from slugging to bubbling. It is confirmed that particle mixing is promoted by bubbling. The flow pattern of bubbling is irregular in comparison with the case of gas injection through a central nozzle which was simulated in our previous study.


2021 ◽  
Vol 71 (12) ◽  
pp. 18-33
Author(s):  
Lokman A. Abdulkareem ◽  
Veyan A. Musa ◽  
Raid A. Mahmood ◽  
Ezideen A. Hasso

The air-water two-phase flow plays an important role in many applications of industry fields. Usually, a 90-degree bend is used to connect pipes for changing the direction of flow which influences the two-phase flow pattern. In this paper, the effect of 90-degree bend under different ranges of gas and liquid superficial velocities on the two-phase flow patterns in the horizontal pipe located after the bend was experimentally investigated, and then results were presented and compared in a two-phase flow pattern map. Also, tomographic images and probability density functions were used to capture the cross-section void fraction and its distribution for the two-phase flow patterns. The results revealed that at low liquid and gas flow rates, a stratified-wavy flow pattern was observed as a dominant flow pattern. While the wavy-annular and semiannular flow patterns were observed at a high range of gas flow rates in the horizontal pipe. The results also showed that at the high range of liquid flow rate, bubbly, plug, slug, stratified-wavy, and wavy-annular flow patterns were observed in the horizontal pipe when the gas flow increased. The tomographic images and probability density functions gave good agreement with the experimental observations and results.


Author(s):  
Rafael Amaya-Gómez ◽  
Jorge López ◽  
Hugo Pineda ◽  
Diana Urbano-Caguasango ◽  
Jorge Pinilla ◽  
...  

A way to predict two-phase liquid-gas flow patterns is presented for horizontal, vertical and inclined pipes. A set of experimental data (7702 points, distributed among 22 authors) and a set of synthetic data generated using OLGA Multiphase Toolkit v.7.3.3 (59 674 points) were gathered. A filtering process based on the experimental void fraction was proposed. Moreover, a classification of the pattern flows based on a supervised classification and a probabilistic flow pattern map is proposed based on a Bayesian approach using four pattern flows: Segregated Flow, Annular Flow, Intermittent Flow, and Bubble Flow. A new visualization technique for flow pattern maps is proposed to understand the transition zones among flow patterns and provide further information than the flow pattern map boundaries reported in the literature. Following the methodology proposed in this approach, probabilistic flow pattern maps are obtained for oil–water pipes. These maps were determined using an experimental dataset of 11 071 records distributed among 53 authors and a numerical filter with the water cut reported by OLGA Multiphase Toolkit v7.3.3.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2440
Author(s):  
Youngwoo Kim ◽  
Dae Yeon Kim ◽  
Kyung Chun Kim

A flow visualization study was carried out for flow boiling in a rectangular channel filled with and without metallic random porous media. Four main flow patterns are observed as intermittent slug-churn flow, churn-annular flow, annular-mist flow, and mist flow regimes. These flow patterns are clearly classified based on the high-speed images of the channel flow. The results of the flow pattern map according to the mass flow rate were presented using saturation temperatures and the materials of porous media as variables. As the saturation temperatures increased, the annular-mist flow regime occupied a larger area than the lower saturation temperatures condition. Therefore, the churn flow regime is narrower, and the slug flow more quickly turns to annular flow with the increasing vapor quality. The pattern map is not significantly affected by the materials of porous media.


Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406 × 2.032 mm cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal that the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Annual flow is identified as the dominant flow pattern for conditions relevant to two-phase micro-channel heat sinks, and forms the basis for development of a theoretical model for both pressure drop and heat transfer in micro-channels. Features unique to two-phase micro-channel flow, such as laminar liquid and gas flows, smooth liquid-gas interface, and strong entrainment and deposition effects are incorporated into the model. The model shows good agreement with experimental data for water-cooled heat sinks.


Sign in / Sign up

Export Citation Format

Share Document