Performance Analysis of Ageing Domestic Water Meters with Respect to Apparent Losses: A Case Study

2019 ◽  
Vol 3 (1) ◽  
pp. 69-80
Author(s):  
Christian Camilleri ◽  
Luke Pace ◽  
Alex Rizzo

In water distribution networks, a substantial amount of Apparent Losses result from water-meter errors. This study aims to evaluate water-meter under-registration, specifically the effect of ageing on the meter measurement errors, controlled at different flow-rates. The study was initiated by establishing a holistic methodology highlighting the planning process and meter-testing procedure. The results achieved show that the metrological percentage meter error is highly pronounced at low flow-rates. In the case of medium to high flow-rates for one-year, three-year, and five-year-old class of meters, meter errors were not statistically significant. However, an opposite outcome for the same flow-rates resulted for the seven-year class meter.

2020 ◽  
Vol 13 (1) ◽  
pp. 31
Author(s):  
Enrico Creaco ◽  
Giacomo Galuppini ◽  
Alberto Campisano ◽  
Marco Franchini

This paper presents a two-step methodology for the stochastic generation of snapshot peak demand scenarios in water distribution networks (WDNs), each of which is based on a single combination of demand values at WDN nodes. The methodology describes the hourly demand at both nodal and WDN scales through a beta probabilistic model, which is flexible enough to suit both small and large demand aggregations in terms of mean, standard deviation, and skewness. The first step of the methodology enables generating separately the peak demand samples at WDN nodes. Then, in the second step, the nodal demand samples are consistently reordered to build snapshot demand scenarios for the WDN, while respecting the rank cross-correlations at lag 0. The applications concerned the one-year long dataset of about 1000 user demand values from the district of Soccavo, Naples (Italy). Best-fit scaling equations were constructed to express the main statistics of peak demand as a function of the average demand value on a long-time horizon, i.e., one year. The results of applications to four case studies proved the methodology effective and robust for various numbers and sizes of users.


Proceedings ◽  
2019 ◽  
Vol 48 (1) ◽  
pp. 26
Author(s):  
Riccardo Zarbo ◽  
Valentina Marsili ◽  
Stefano Alvisi ◽  
Marco Franchini

Pressure reducing valves (PRVs) effectiveness for water distribution networks’ (WDNs’) optimal pressure management is proven, but problems and operational limitations have been highlighted by some recent studies. In this work, the functioning of a piston-actuated pressure reducing valve (PA-PRV), subjected to low flow regimes, is investigated by means of a laboratory test set. The results obtained highlight that the PA-PRV tends not to respect the imposed set-point value, and can present an unstable behaviour, characterised by significant pressure oscillations under some flow-rate conditions.


Author(s):  
Hamideh Fallahi ◽  
Mohammadreza Jalili Ghazizadeh ◽  
Babak Aminnejad ◽  
Jafar Yazdi

Abstract Water leakage control in water distribution networks (WDNs) is one of the main challenges of water utilities. The present study proposes a new method to locate a leakage in WDNs using feedforward artificial neural networks (ANNs). For this purpose, two ANNs training cases are considered. For case1, the ANNs are trained by average daily water demand, including small to large hypothetical leakages. In case 2, the ANNs are trained by hourly water demand and variable hourly nodal leakages over 24 hours. The training parameters are determined by EPANET2.0 hydraulic simulation software using MATLAB programming language. In both cases, first, ANNs are trained using flow rates of total pipes number. Then, sensitivity analysis is performed by hybrid ANNs for the flow rates of pipes number less than the number of the total pipes. The results of proposed hybrid ANNs indicate that if at least the flow rates of 10% of the total pipes are known (using flowmeters), then the leakage locations in both cases can be determined. Despite the complexity of case 2, because of the variations of demand and leakage over the 24-hour, the proposed method could detect the leakage location with high accuracy.


2014 ◽  
Vol 15 (1) ◽  
pp. 173-180 ◽  
Author(s):  
A. Fortunato ◽  
C. Arena ◽  
M. R. Mazzola

The paper provides insights into stratified sampling, a standard statistical technique that may be employed to assess domestic water use in water distribution networks. The basic idea is to use only a few meters to provide inference on the total water consumption of a network or of a district metered area through the knowledge of some additional stratification variables, such as household typology, size and occupants number. Since any sampling procedure assumes that the variance of the variable at stake is known, either a suitable amount of past consumption data is necessary, or a specific preliminary survey must be carried out, in order to define the sampling plan. An application with real consumption data from a small municipality in Sicily (Italy) shows that number of occupants for each household is sufficient to design an effective sampling plan and that the methodology can be successfully applied in the technical practice, thus allowing a dramatic reduction of the number of customer meters to be read in order to quantify total water consumption compared to standard practice based on the reading of all meters.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4738 ◽  
Author(s):  
Jacopo Carlo Alberizzi ◽  
Massimiliano Renzi ◽  
Maurizio Righetti ◽  
Giuseppe Roberto Pisaturo ◽  
Mosè Rossi

The use of Pumps-as-Turbines (PaTs) to replace hydraulic turbines as energy-recovery units in industrial and civil applications is widening the penetration of hydropower in small-scale plants. PaTs show advantages in terms of installation costs and the availability of solutions. Water Distribution Networks (WDNs) represent a potential application where PaTs can be installed to recover water-pressure energy. In this work, a MATLAB©–Simulink model of a WDN branch located in South-Tyrol (Italy) was developed. The flow rate of the WDN was assessed though a measurement campaign showing high daily variability, which negatively affect PaT performance. To let the machine operate close to the Best Efficiency Point (BEP), four different operating strategies were studied to meet the constraint of a fixed pressure equal to 4 bar downstream the WDN branch, required to supply water to users. A PaT speed control strategy was implemented, granting better exploitation of flow rates even in the presence of high daily fluctuations. Energy recovery was 23% higher than that of the reference thanks to an advanced strategy based on controlling PaT rotational speed when the flow rate is smaller than that of the design, and operating in off-design conditions when flow rate is higher than that of the BEP.


2016 ◽  
Vol 16 (6) ◽  
pp. 1693-1699
Author(s):  
Inga Hilbrandt ◽  
Aki Sebastian Ruhl ◽  
Martin Jekel

Anthropogenic organic micropollutants (OMP) occur along the whole urban water cycle including drinking water. Various OMP can be efficiently adsorbed onto activated carbon. In the present study a commercial monolithic adsorber (MA), originally developed for gas treatment, was examined for the removal of OMP from drinking water. As a promising advantage, the adsorber can be introduced into existing pipes without causing substantial pressure losses. The MA was first characterized with scanning electron microscopy and energy dispersive X-ray spectroscopy. Weight loss during incineration at 550 °C indicated an activated carbon content of around 25%. Adsorption isotherms were recorded with milled material of the MA to estimate the capacity of the embedded adsorbent. Long-term flow-through experiments with two different flow rates were conducted to estimate the in-line removal efficiency. At low flow rates removals of 60% benzotriazole, 40% carbamazepine and 30% diclofenac were observed initially followed by a linear increase of effluent concentrations. Calculated loadings after 60 days of operation were e.g. 30 μg benzotriazole per g adsorber or 110 μg benzotriazole per g activated carbon as constituent of the adsorber. For specific applications, MA might be useful for the in-line elimination of OMP within drinking water distribution systems.


Author(s):  
Francesco Lombardi ◽  
Guglielmo Silvagni ◽  
Piero Sirini ◽  
Riccardo Spagnuolo ◽  
Fabio Volpi

This paper develops a model to characterize the demand for domestic water based on its end users' usage habits. The use of individual residential appliances (bathroom sink, toilet, shower, bath, etc.) is interpreted using a probabilistic approach. The paper also applies the model to the distribution network of the municipality of Sparanise, a small city in the province of Caserta, Italy. The results of this application are compared to the real output of the city's actual water reservoir. Flow variability during the day was successfully modelled. A comparison of the simulated and recorded data on a daily level indicates the proper adjustment of the volume distribution; the peak flow rates were also comparable. The model could be a useful tool for analyzing domestic water consumption, especially in the design and management of water distribution networks. Use of the model would particularly aid the Integrated Urban Water Management Operator both in optimizing the operating pressures in the various districts’ networks and in predicting domestic water consumption when drafting its water balance documents.


2013 ◽  
Vol 6 (1) ◽  
pp. 119-149 ◽  
Author(s):  
C. M. Fontanazza ◽  
V. Notaro ◽  
V. Puleo ◽  
G. Freni

<p><strong>Abstract.</strong> In water supply systems, a considerable amount of apparent loss is caused by meter under-registration. Water meters are subject to intrinsic systemic error depending on the actual flow rates passing through them. Furthermore, the moving parts of the meter are subject to wear and tear that progressively reduce meter accuracy. The increase in systemic error is especially evident at low flow rates because of growing friction in the rotating mechanism, which requires a higher flow to start the meter (starting flow). The aim of this paper is to experimentally investigate metering error in an attempt to find a direct link between meter age, network pressure and apparent losses caused by the inability of the meter to accurately register the volume passing though it at low flow rates. The study was performed through laboratory experiments in which worn-out water meters were tested using a test bench. The results of the laboratory experiments show that ageing and pressure are both relevant parameters for determining meter starting flow. These results were then applied to assess the effects on apparent losses of the age of the meter, varying pressure values upstream of the meter (the pressure in the network where the meter is installed) and different patterns of flow rates passing through the device (the consumption pattern of the user). The presented results are useful for understanding the effects of operating conditions on water meter under-registration, which can aid water managers in implementing effective replacement campaigns.</p>


2010 ◽  
Vol 1278 ◽  
Author(s):  
V. Tzatchkov ◽  
M. P. Hansen ◽  
H. Ramírez

AbstractIn Mexico City, one of the largest cities in the world, large losses occur in the drinking water distribution system, mainly due to the age of the pipes and the type of materials used in water delivery to the end user. In the past, most of the water distribution networks in the city were built with asbestos-cement pipes. Currently, policies dictate that they be replaced by polyethylene pipes. While the size of the city leads to limited financial resources, it is important to prioritize pipe replacement; therefore, a practical approach based on Deterioration Point Allocation (DPA) is proposed to define the priority level. In the next set of factors, each is represented by appropriate indicators:1. Failures in pipes and service connectionsa. Number of failures (leaks) in pipes repaired in one year for every 100 km of pipeline.b. Number of failures (leaks) repaired in one year per 1000 service connections.c. Spatial concentration of failures (leaks) in a pipe2. Annual pipe and service connections rehabilitation or replacement level per year.3. Operating parameters of the network: intermittent water supply, water pressure, and water losses4. Deterioration status of pipes and service connections5. Land subsidenceA score and a weight are assigned to each factor. The score depends on the values of the indicator, and the weight on the relative importance of the factor. The final score is used to prioritize the replacement and it is calculated by adding up the scores of each factor.Considering that available information is incomplete and unstructured, two levels of use are proposed: basic (with available data, using MS Excel) and advanced (using a GIS).


Author(s):  
Ali Nasirian ◽  
Mahmoud F. Maghrebi ◽  
Ali Mohtashami

Abstract Recently, calibration based methods are considered to determine the quantities and locations of all leakages in a Water Distribution Network (WDN), simultaneously. In this paper, the accuracy of detecting leakages using Ant Colony Optimization (ACO) in two networks including a hypothetical and a laboratorial network is investigated. A novel method is introduced to analyze the effects of measurement errors on demand calibration in an under-determined problem. The results confirm the ability of the optimization-based method detecting the exact locations and values of the leakages in a WDN. Also, it is emphasized that merely suitable fitnesses cannot provide sufficient confidence in result accuracy. To overcome this difficulty, the correctness of leakage detection can be verified in a sampling design problem. Moreover, to check the reliability of leakage detection an alternative method based on various results is introduced in this research.


Sign in / Sign up

Export Citation Format

Share Document