A Practical Approach for Prioritizing The Replacement of Water Pipes in Mexico City

2010 ◽  
Vol 1278 ◽  
Author(s):  
V. Tzatchkov ◽  
M. P. Hansen ◽  
H. Ramírez

AbstractIn Mexico City, one of the largest cities in the world, large losses occur in the drinking water distribution system, mainly due to the age of the pipes and the type of materials used in water delivery to the end user. In the past, most of the water distribution networks in the city were built with asbestos-cement pipes. Currently, policies dictate that they be replaced by polyethylene pipes. While the size of the city leads to limited financial resources, it is important to prioritize pipe replacement; therefore, a practical approach based on Deterioration Point Allocation (DPA) is proposed to define the priority level. In the next set of factors, each is represented by appropriate indicators:1. Failures in pipes and service connectionsa. Number of failures (leaks) in pipes repaired in one year for every 100 km of pipeline.b. Number of failures (leaks) repaired in one year per 1000 service connections.c. Spatial concentration of failures (leaks) in a pipe2. Annual pipe and service connections rehabilitation or replacement level per year.3. Operating parameters of the network: intermittent water supply, water pressure, and water losses4. Deterioration status of pipes and service connections5. Land subsidenceA score and a weight are assigned to each factor. The score depends on the values of the indicator, and the weight on the relative importance of the factor. The final score is used to prioritize the replacement and it is calculated by adding up the scores of each factor.Considering that available information is incomplete and unstructured, two levels of use are proposed: basic (with available data, using MS Excel) and advanced (using a GIS).

2017 ◽  
Vol 6 (2) ◽  
pp. 98
Author(s):  
Ryland Cairns ◽  
Michael Macpherson

The purpose of this paper is to explore the potential of a six sigma approach to reducing water losses through a combination of water efficiency and leak detection on a private distribution system. The paper takes the form of a case study that investigates the implementation of water reduction strategy across an estate with 26 miles of potable water pipe and over 200 facilities. This incorporates methods developed in the water industry such as water loss reduction and water demand management. The paper demonstrates that large water savings could be made through adoption of a six sigma approach. The approach has the potential to be applied to a wide range of situations including sites with limited technology. This case study provides a useful source for Facilities Managers involved in the management of utilities to determine suitable water saving approaches and strategies for large estates with private water distribution networks.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 98
Author(s):  
Athanasios V. Serafeim ◽  
George Kokosalakis ◽  
Roberto Deidda ◽  
Irene Karathanasi ◽  
Andreas Langousis

Quantification of water losses (WL) in water distribution networks (WDNs) is a crucial task towards the development of proper strategies to reduce them. Currently, WL estimation methods rely on semi-empirical assumptions and different implementation strategies that increase the uncertainty of the obtained estimates. In this work, we compare the effectiveness and robustness of two widely applied WL estimation approaches found in the international literature: (a) the water balance, or top-down, approach introduced by the International Water Association (IWA), and (b) the bottom-up or minimum night flow (MNF) approach, based on a recently proposed probabilistic MNF estimation method. In doing so, we use users’ consumption and flow-pressure data from the 4 largest pressure management areas (PMAs) of the WDN of the city of Patras (the third largest city in Greece), which consist of more than 200 km of pipeline, cover the entire city center of Patras, and serve approximately 58,000 consumers. The obtained results show that: (a) when MNF estimation is done in a rigorous statistical setting from high resolution flow-pressure timeseries, and (b) there is sufficient understanding of the consumption types and patterns during day and night hours, the two approaches effectively converge, allowing for more reliable estimation of the individual WL components. In addition, when high resolution flow-pressure timeseries are available at the inlets of PMAs, the suggested version of the bottom-up approach with probabilistic estimation of MNF should be preferred as less sensitive, while allowing for confidence interval estimation of the individual components of water losses and development of proper strategies to reduce them.


Author(s):  
А.В. Степакин ◽  
А.Н. Перегуда ◽  
С.Г. Зайцева ◽  
Д.А. Горбачев ◽  
М.Н. Сопыряев

Природный дефицит водных ресурсов в сочетании с высокой степенью износа систем водоснабжения обусловливает напряженную ситуацию с обеспечением питьевой водой в Крыму. За последние несколько лет для решения проблемы на региональном и федеральном уровне были разработаны и реализуются программы модернизации водного хозяйства полуострова. Одной из ключевых задач этих программ является снижение потерь воды, которые в настоящее время достигают 40–60%. Описан комплекс мероприятий, направленных на снижение потерь воды в г. Севастополе. Комплекс мер, разработанный в соответствии с международным опытом и российскими рекомендациями, учитывает существующее состояние системы водоснабжения Крыма. Мероприятия включают в себя создание современного комплекса управления сетями, зонирование водопроводной сети, регулирование давления, мониторинг и устранение утечек. По результатам анализа производственных показателей определено, что первоочередным мероприятием для Севастополя является внедрение современной системы акустического мониторинга на распределительных сетях, которая позволит эффективно обнаруживать скрытые утечки и сэкономить городу тысячи кубометров дефицитной питьевой воды. Описаны результаты пилотного проекта по обследованию 5 км водопроводных сетей системой акустического мониторинга. The natural scarcity of water resources coupled with a high degree of deterioration of water supply systems result in a tense situation with the drinking water supply in Crimea. Over the past few years, a number of programs of upgrading the peninsula's water industry have been developed and are being implemented in order to solve the problem at the regional and federal levels. One of the key objectives of these programs is to reduce water losses that currently reach 40–60%. A set of measures aimed at reducing water losses in Sebastopol is described. The set of measures developed in accordance with the international experience and Russian recommendations takes into account the current condition of the Crimean water supply system. The activities include designing an advanced network management complex, zoning of the water supply network, pressure regulation, monitoring and elimination of leaks. Based on the results of the analysis of the performance indicators, it was determined that the priority measure for Sebastopol was the introduction of an advanced acoustic monitoring system in the water distribution networks that would provide for detecting effectively latent leaks and saving the city thousands of cubic meters of scarce drinking water. The results of a pilot project on the inspection of 5 km of the water supply networks using the acoustic monitoring system are described.


Author(s):  
Ю.А. Егорова ◽  
Е.В. Коневский ◽  
А.В. Васьковский ◽  
В.А. Зайко

За период с 2013 г. ООО «Самарские коммунальные системы» в рамках внедрения и развития электронных моделей систем водоснабжения и водоотведения приобрело программное обеспечение, организовало процесс паспортизации и актуализации сетей водоснабжения и водоотведения, опробовало различные методы поиска скрытых потерь воды на сетях водоснабжения с использованием результатов их гидравлического моделирования, произвело оценку различных перспективных мероприятий развития системы подачи и распределения воды и отведения стоков, сформировало алгоритм взаимодействия различных программных продуктов и сотрудников, работающих с ними, провело работы по обеспечению требований по охране сведений, относящихся к государственной тайне, разработало мероприятия по поддержанию ранее достигнутых результатов по устранению потерь воды. В настоящее время разрабатываются полномасштабные детализированные гидравлические модели систем водоснабжения и водоотведения, отрабатывается механизм передачи данных сбытового подразделения об объемах реализованных услуг непосредственно в гидравлическую модель. Since 2013, «Samarskie Kommunal’nye Sistemy», LLC, within the framework of the implementation and development of electronic models of water supply and wastewater disposal systems, acquired the software, arranged the process of certification and updating of water distribution and sewer networks, tested various methods of detecting latent water losses in the water distribution networks using the results of hydraulic modeling, assessed various promising measures for the development of the water supply and distribution system and wastewater disposal, developed an algorithm for the interaction of various software products and employees working with them, carried out measures on meeting the requirements for the protection of information related to the National Security Information, developed measures to maintain previously achieved results in eliminating water losses. Currently, full-scale detailed hydraulic models of the water supply and wastewater disposal systems are being developed, a mechanism is being tested for transferring data from the sales department on the volumes of provided services directly to the hydraulic model.


2020 ◽  
Vol 2 (1) ◽  
pp. 51
Author(s):  
Nikolaos Kourbasis ◽  
Menelaos Patelis ◽  
Stavroula Tsitsifli ◽  
Vasilis Kanakoudis

Water distribution networks suffer from high levels of water losses due to leaks and breaks, mainly due to high operating pressure. One of the most well-known methods to reduce water losses is pressure management. However, when the operating pressure in a water distribution network reduces, the time the water stays within the network (called water age) increases. Increased water age means deteriorated water quality. In this paper, water pressure in relation to water age is addressed in a water distribution network in Greece. Using simulation and optimization tools, the optimum solution is found to reduce water age and operating pressure at the same time. In addition, District Metered Areas are formed and water age is optimized.


10.29007/gvnz ◽  
2018 ◽  
Author(s):  
Armando Di Nardo ◽  
Michele Di Natale ◽  
Anna Di Mauro ◽  
Eva Martínez Díaz ◽  
Jose Antonio Blázquez Garcia ◽  
...  

The recent development and applications of social network theory in many fields of engineering (electricity, gas, transport, water, etc.) allows both the understanding of networks and to improve their management. Social network theory coupled to the availability of real time data and big data analysis techniques can change drastically the traditional approaches to manage civil networks. Recently, some authors are working to apply this novel approach, based on social network theory, on the water distribution networks using: a) graph partitioning algorithms to define optimal district meter areas both for water losses identification and for water network protection, b) innovative topological, energy and hydraulic indices to analyze performance; and c) GIS (Geographical Information System) to provide a more effective display of results and to improve network behavior in specific operational conditions. In this paper, a novel release 3.5 of SWANP software, that implements all these features, was tested on a real large water network in Alcalá de Henares, Spain.


2020 ◽  
Vol 21 (2) ◽  
pp. 227-235
Author(s):  
Muhammad Rizki Apritama ◽  
I Wayan Koko Suryawan ◽  
Yosef Adicita

ABSTRACTThe clean water supply system network on Lengkang Kecil Island was developed in 2019. A small portion of the community's freshwater comes from harvesting rainwater and dug wells, which are only obtained during the rainy season. The primary source of clean water used by the community comes from underwater pipelines with a daily discharge of 0.86 l/sec. The water supply of the Lengkang Kecil Island community is 74.3 m3/day, with 146 House Connections (HCs) and to serve public facilities such as elementary schools, primary health centers, and mosques. Hydraulic evaluation of clean water distribution using EPANET 2.0 software on flow velocity shows the lowest rate of 0.29 m/s and the highest of 1.21 m/s. The lowest pressure value in the distribution system is 6.94-6.96 m and headloss units in the range 0.08-0.25 m/km. These three criteria are still within the distribution network design criteria (feasible). A carbon footprint can be calculated from each activity from the analysis of the evaluation of clean water distribution networks. The most massive emissions came from pumping activities with 131 kg CO2-eq, followed by emissions from wastewater 62.5 kgCO2-eq. Further research is needed to determine the quality of wastewater and the design for a centralized wastewater treatment plant (IPALT) to improve Lengkang Kecil Island residents' living standards.Keywords: Lengkang Kecil Island, water, EPANET, carbon footprintABSTRAKJaringan sistem penyediaan air bersih pada Pulau Lengkang Kecil dimulai pada tahun 2019. Sebagian kecil air bersih yang digunakan masyarakat berasal dari pemanenan air hujan dan sumur gali yang hanya didapat pada musim hujan. Sumber air bersih utama yang digunakan masyarakat berasal dari pengaliran perpipaan bawah laut dengan debit harian 0,86 l/detik. Kebutuhan air masyarakat Pulau Lengkang Kecil adalah 74,3 m3/hari dengan 146 Sambungan Rumah (SR) serta untuk melayani fasilitas umum seperti sekolah dasar (SD), puskesmas, dan masjid. Evaluasi hidrolis distribusi air bersih dengan menggunakan software EPANET 2.0 terhadap kriteria kecepatan aliran menunjukkan nilai terendah 0,29 m/s dan tertinggi 1,21 m/s. Nilai sisa tekan dalam sistem distribusi adalah 6,94–6,96 m dan unit headloss pada kisaran 0,08–0,25 m/km. Ketiga kriteria ini masih berada dalam kriteria desain jaringan distribusi (layak). Dari analisis evaluasi jaringan distribusi air bersih, dapat dihitung jejak karbon yang dihasilkan dari setiap kegiatannya. Emisi terbesar berasal dari kegiatan pemompaan dengan nilai 131 kgCO2-eq, diikuti dengan emisi yang berasal dari air limbah dengan nilai 62,5 kgCO2-eq. Penelitian lanjutan diperlukan untuk mengetahui kualitas dari air limbah dan desain untuk instalasi pengolahan air limbah terpusat (IPALT) untuk meningkatkan taraf hidup penduduk Pulau Lengkang Kecil.Kata kunci: Pulau Lengkang Kecil, air, EPANET, jejak karbon


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
H. J. Surendra ◽  
B. T. Suresh ◽  
T. D. Ullas ◽  
T. Vinayak ◽  
Vinay P. Hegde

AbstractWater companies and their consumers affected with leakages in water distribution system worldwide. This has attracted many practitioner’s attention as well as researchers over the past years. Selected study area suffers from water losses of about 10 to 15% which accounts to loss of about 9 to 9.75 million liters per month. The present study was under taken to understand, analyze and evaluate the losses and suggest preventive measures of wrapping and repair clamping for control of these losses. The assessment of water losses is done through comparative analysis of data using Microsoft Excel software. Population forecasting is done in context of assessing the amount of water lost that can be prevented in future decades, adjusting to increased water demand and losses. For better efficiency of the suggested methods, experimental analysis was carried out on a reduced scale model of a single stretched pipeline. Cost estimation of the preventive measures was done by obtaining information about the materials used by trading professionals.


2020 ◽  
Vol 13 (1) ◽  
pp. 31
Author(s):  
Enrico Creaco ◽  
Giacomo Galuppini ◽  
Alberto Campisano ◽  
Marco Franchini

This paper presents a two-step methodology for the stochastic generation of snapshot peak demand scenarios in water distribution networks (WDNs), each of which is based on a single combination of demand values at WDN nodes. The methodology describes the hourly demand at both nodal and WDN scales through a beta probabilistic model, which is flexible enough to suit both small and large demand aggregations in terms of mean, standard deviation, and skewness. The first step of the methodology enables generating separately the peak demand samples at WDN nodes. Then, in the second step, the nodal demand samples are consistently reordered to build snapshot demand scenarios for the WDN, while respecting the rank cross-correlations at lag 0. The applications concerned the one-year long dataset of about 1000 user demand values from the district of Soccavo, Naples (Italy). Best-fit scaling equations were constructed to express the main statistics of peak demand as a function of the average demand value on a long-time horizon, i.e., one year. The results of applications to four case studies proved the methodology effective and robust for various numbers and sizes of users.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2530 ◽  
Author(s):  
Luigi Cimorelli ◽  
Carmine Covelli ◽  
Bruno Molino ◽  
Domenico Pianese

Greenhouse gas emission is one of the main environmental issues of today, and energy savings in all industries contribute to reducing energy demand, implying, in turn, less carbon emissions into the atmosphere. In this framework, water pumping systems are one of the most energy-consuming activities. The optimal regulation of pumping systems with the use of variable speed drives is gaining the attention of designers and managing authorities. However, optimal management and operation of pumping systems is often performed, employing variable speed drives without considering if the energy savings are enough to justify their purchasing and installation costs. In this paper, the authors compare two optimal pump scheduling techniques, optimal regulation of constant speed pumps by an optimal ON/OFF sequence and optimal regulation with a variable speed pump. Much of the attention is devoted to the analysis of the costs involved in a hypothetical managing authority for the water distribution system in order to determine whether the savings in operating costs is enough to justify the employment of variable speed drives.


Sign in / Sign up

Export Citation Format

Share Document