scholarly journals Dynamics of Short Recoil-Operated Weapon

Author(s):  
Martin MACKO ◽  
Bien Van VO ◽  
Quang Anh MAI

In this article, the authors mentioned the function of short-recoil-operated weapons with a vertical sliding-wedge breechblock. The dynamic simulation was conducted and then the results were compared with the corresponding experimental data to verify reliability of the model. The model is calculated and tested out on the 37 mm twin anti-aircraft gun. Besides, the article presents the effect of some structural parameters on functionality of the automatic weapon. The reported results are an important theoretical basis to determine the rate of fire and the forces acting on the guns. The movement of the breechblock also affects stability of the weapon and can therefore be used to a math model or to simulate the movement of the weapon. Calculated and verified data could be used for the design of an automatic firing system as well as for solving vibration on automatic guns when burst firing.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Vo Van Bien ◽  
◽  
Martin Macko ◽  
Nguyen Thai Dung ◽  
Nguyen Duy Phon ◽  
...  

The paper presents a method of determining the dynamic parameters of multiple-rocket-launcher system mounted on the wheeled vehicle based on Newton's law of motion. The dynamic simulation was conducted and then the results were compared with the corre-sponding experimental data to verify the reliability of the model. The model was ap-plied in calculation and tested out on multiple-rocket-launcher system B?-21 (of Rus-sia). The theoretical model calculation results are relatively consistent with the meas-ured experimental data. The dependence of the launcher oscillation on the rate of fire was investigated, which determined the optimal rate of fire for each launcher. These results are used to evaluate the firing stability of the launcher when firing individual shots and firing bursts. This is an important theoretical basis which can be a reference for designers in the design process of improvement, manufacture, exploitation and use of a launcher mounted on the wheeled vehicle.


2009 ◽  
Vol 2 (1) ◽  
pp. 95-100
Author(s):  
Juan Sebastian Yakisich

The length of the cell cycle (TC) is a tight regulated process and is important for proper development and homeostasis. Although several methods are available for estimating the duration of the cell cycle, it is difficult to determinate small differences of TC between two different cell populations due to biological and/or experimental variability. A novel strategy based in co-cultivation of two cell strains followed by a series of dilution and propagation of the culture will allow the quantification of very small differences in the length of two cell populations at resolution levels not possible at present with current methods. This is achieved by a separation of the endpoint variable measured to compare between two cell populations. The theoretical basis of this approach is discussed in the context of published experimental data and simulation of idealized experiments using virtual strains of different cell cycle length.


2017 ◽  
Author(s):  
Fu Zhang ◽  
Yafei Wang ◽  
Wei Wang ◽  

A comparative analysis of the kinematic parameters of a goat on different slopes was conducted to study the kinematic parameters of goats on different slopes with walking mechanics. The uphill walking processes on different slopes (0°, 5°, 10°, 15°, 20°, 25° and 30°) were recorded by a high speed video system (VRI Phantom M110). The experimental image results were processed and analyzed using PCC and MATLAB software. The kinematic parameters were obtained from the goat walking on different slopes; these parameters are the changes of centroid with displacement, speed with time, and acceleration with time. As the gradient in the uphill process increases, the range of centroid fluctuation ranges from 0.079 to 0.59 and the rate of change ranges from 0.4 to 2.2 m/s, while the acceleration of the goat slope decreases. The present research can provide theoretical basis and experimental data for the design of a biomimetic agricultural slope walking mechanism.


2001 ◽  
Vol 57 (2) ◽  
pp. 163-177 ◽  
Author(s):  
V. Milman ◽  
E. V. Akhmatskaya ◽  
R. H. Nobes ◽  
B. Winkler ◽  
C. J. Pickard ◽  
...  

The structural properties of the silicate garnets andradite, Ca3Fe2Si3O12, uvarovite, Ca3Cr2Si3O12, knorringite, Mg3Cr2Si3O12, goldmanite, Ca3V2Si3O12, blythite, Mn^{2+}_3Mn^{3+}_2Si3O12, skiagite, Fe^{2+}_3Fe^{3+}_2Si3O12, calderite, Mn^{2+}_3Fe^{3+}_2Si3O12, and khoharite, Mg3Fe^{3+}_2Si3O12, have been investigated with a quantum-mechanical model as a function of applied pressure. The study has been performed with the density functional theory code CASTEP, which uses pseudopotentials and a plane-wave basis set. All structural parameters have been optimized. The calculated static geometries (cell parameters, internal coordinates of atoms and bond lengths), bulk moduli and their pressure derivatives are in good agreement with the experimental data available. Predictions are made for those cases where no experimental data have been reported. The data clearly indicate that the elastic properties of all silicate garnets are dominated by the compressibility of the dodecahedral site. The compression mechanism is found to be based on a bending of the angle between the centers of the SiO4 tetrahedra and the adjacent octahedra, as in the aluminosilicate garnets. An analysis of the relationship between ionic radii of the cations and the compressibility of silicate garnets is presented.


2012 ◽  
Vol 630 ◽  
pp. 473-478 ◽  
Author(s):  
Fei Wan ◽  
Guo Xi Li ◽  
Jing Zhong Gong ◽  
Bao Zhong Wu

To change the status of time-consuming and over-reliance on technicians in mechanical system alignment process, the ACP technology is presented. The mapping between alignment process parameters and dynamic parameters was established through contact theory to build the agent model for parts. While the second mapping between dynamic parameters and machine dynamic characteristics is calculated by dynamic simulation software to conduct computational experiments. Experimental data is analyzed in order to implement data mine, optimize the alignment process, guide technician alignment, modify the theory mapping and improve the alignment efficiency.


2020 ◽  
Vol 299 ◽  
pp. 658-663
Author(s):  
S.E. Krylova ◽  
Sergey V. Gladkovskii ◽  
E.V. Romashkov

The scientific bases for the development of rational compositions and methods for hardening a large-sized metallurgical tool from micro-alloyed steels are stated. Based on the generalization of the experimental data, the regularities of phase and structural transformations at various stages of the technological cycle are revealed; the relationships between structural parameters, chemical composition and mechanical properties have been studied and described.


2012 ◽  
Vol 452-453 ◽  
pp. 1296-1300 ◽  
Author(s):  
Zhong Jun Yin ◽  
Yi Xin Hu

Through analysis of the dynamics process of hydraulic rock drill, this paper builds a model of the impact mechanism of hydraulic rock drill with AMESim software, obtains curves of the displacements of the piston and valve core, and gets the pressure of the piston chamber. The dynamic analysis of the results indicates that the model of the impact mechanism of hydraulic rock drill agrees well with the principle of hydraulic rock drill. As a result, this research provides a new theoretical basis and method for the hydraulic rock drill.


Author(s):  
Z. Liu ◽  
X. Han ◽  
Y. F. Liu

A nonlinear dynamic model of a large flow solenoid is presented with the multi-physics dynamic simulation software called SimulationX. Validation is performed by comparing the experimental results with the simulated ones. The dynamic characteristics of the large flow solenoid valve are analyzed. Different structural parameters are modified in this research and the diameter of the orifice is proved to be one of the most important parameters which influences the pressure response most.


2016 ◽  
Vol 693 ◽  
pp. 458-462
Author(s):  
D.G. Chang ◽  
F. Shu ◽  
X.B. Chen ◽  
Y.J. Zou

The meshing efficiency of helical gear transmission is calculated by using the method of double integral. The external involute helical gear meshing is taken and the model of helical gears is simplified by the idea of differential. The instantaneous efficiency equation of a meshing point is derived, and further more the rectangular coordinate system of meshing zone of helical gears is established. The average meshing efficiency of helical gears is achieved by using double integral method. Then, the influence of design parameters is studied and the efficiency formula is verified by comparing the theoretical results with relevant experimental data, which can provide a theoretical basis for decide the design parameters.


Sign in / Sign up

Export Citation Format

Share Document