scholarly journals Role of the Hippo pathway in cell proliferation and organ size control. Disorders of the pathway in cancer diseases

2014 ◽  
Vol 68 ◽  
pp. 504-516 ◽  
Author(s):  
Agnieszka Rybarczyk ◽  
Piotr Wierzbicki ◽  
Anna Kowalczyk ◽  
Zbigniew Kmieć
Open Biology ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 180029 ◽  
Author(s):  
Zi Liang ◽  
Yahong Lu ◽  
Ying Qian ◽  
Liyuan Zhu ◽  
Sulan Kuang ◽  
...  

Hippo signalling represents a cell proliferation and organ-size control pathway. Yorki (Yki), a component of the Hippo pathway, induces the transcription of a number of targets that promote cell proliferation and survival. The functions of Yki have been characterized in Drosophila and mammals, while there are few reports on silkworm, Bombyx mori . In the present study, we found that BmYki3 facilitates cell migration and cell division, and enlarges the cultured cell and wing disc size. Co-immunoprecipitation results indicated that BmYki3 may interact with thymosin, E3 ubiquitin-protein ligase, protein kinase ASK1, dedicator of cytokinesis protein 1, calcium-independent phospholipase A2 and beta-spectrin. RNA-seq results indicated that 4444 genes were upregulated and 10 291 genes were downregulated after BmYki3 was overexpressed in the cultured cells. GO annotation indicated that the up/downregulated genes were enriched in 268/382 GO terms ( p < 0.01); KEGG analysis showed that the up/downregulated genes were enriched in 49/101 pathways. These findings provided novel information to understand the functions of BmYki3 in a cell proliferation and organ-size control pathway.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Helen Rankin Willsey ◽  
Xiaoyan Zheng ◽  
José Carlos Pastor-Pareja ◽  
A Jeremy Willsey ◽  
Philip A Beachy ◽  
...  

A fundamental question of biology is what determines organ size. Despite demonstrations that factors within organs determine their sizes, intrinsic size control mechanisms remain elusive. Here we show that Drosophila wing size is regulated by JNK signaling during development. JNK is active in a stripe along the center of developing wings, and modulating JNK signaling within this stripe changes organ size. This JNK stripe influences proliferation in a non-canonical, Jun-independent manner by inhibiting the Hippo pathway. Localized JNK activity is established by Hedgehog signaling, where Ci elevates dTRAF1 expression. As the dTRAF1 homolog, TRAF4, is amplified in numerous cancers, these findings provide a new mechanism for how the Hedgehog pathway could contribute to tumorigenesis, and, more importantly, provides a new strategy for cancer therapies. Finally, modulation of JNK signaling centers in developing antennae and legs changes their sizes, suggesting a more generalizable role for JNK signaling in developmental organ size control.


2019 ◽  
Author(s):  
Joseph H.A. Vissers ◽  
Lucas G. Dent ◽  
Colin House ◽  
Shu Kondo ◽  
Kieran F. Harvey

ABSTRACTThe Hippo pathway is an evolutionary conserved signalling network that regulates organ size, cell fate control and tumorigenesis. In the context of organ size control, the pathway incorporates a large variety of cellular cues such as cell polarity and adhesion into an integrated transcriptional response. The central Hippo signalling effector is the transcriptional co-activator Yorkie, which controls gene expression in partnership with different transcription factors, most notably Scalloped. When it is not activated by Yorkie, Scalloped can act as a repressor of transcription, at least in part due to its interaction with the corepressor protein Tgi. The mechanism by which Tgi represses transcription is incompletely understood and therefore we sought to identify proteins that potentially operate together with it. Using an affinity purification and mass-spectrometry approach we identified Pits and CtBP as Tgi-interacting proteins, both of which have been linked to transcriptional repression. Both Pits and CtBP were required for Tgi to suppress the growth of the D. melanogaster eye and CtBP loss suppressed the undergrowth of yorkie mutant eye tissue. Furthermore, as reported previously for Tgi, overexpression of Pits suppressed transcription of Hippo pathway target genes. These findings suggest that Tgi might operate together with Pits and CtBP to repress transcription of genes that normally promote tissue growth. The human orthologues of Tgi, CtBP and Pits (VGLL4, CTBP2 and IRF2BP2) physically and functionally interact to control transcription, implying that the mechanism by which these proteins control transcriptional repression is conserved throughout evolution.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Lu Jie ◽  
Wang Fan ◽  
Dai Weiqi ◽  
Zhou Yingqun ◽  
Xu Ling ◽  
...  

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and the third leading cause of cancer mortality. Despite continuing development of new therapies, prognosis for patients with HCC remains extremely poor. In recent years, control of organ size becomes a hot topic in HCC development. The Hippo signaling pathway has been delineated and shown to be critical in controlling organ size in both Drosophila and mammals. The Hippo kinase cascade, a singling pathway that antagonizes the transcriptional coactivator Yes-associated protein (YAP), plays an important role in animal organ size control by regulating cell proliferation and apoptosis rates. During HCC development, this pathway is likely inactivated in tumor initiated cells that escape suppressive constrain exerted by the surrounding normal tissue, thus allowing clonal expansion and tumor development. We have reviewed evolutionary changes in YAP as well as other components of the Hippo pathway and described the relationships between YAP genes and HCC. We also discuss regulation of transcription factors that are up- and downstream of YAP in liver cancer development.


2011 ◽  
Vol 193 (4) ◽  
pp. 633-642 ◽  
Author(s):  
Sandra Habbig ◽  
Malte P. Bartram ◽  
Roman U. Müller ◽  
Ricarda Schwarz ◽  
Nikolaos Andriopoulos ◽  
...  

The conserved Hippo signaling pathway regulates organ size in Drosophila melanogaster and mammals and has an essential role in tumor suppression and the control of cell proliferation. Recent studies identified activators of Hippo signaling, but antagonists of the pathway have remained largely elusive. In this paper, we show that NPHP4, a known cilia-associated protein that is mutated in the severe degenerative renal disease nephronophthisis, acts as a potent negative regulator of mammalian Hippo signaling. NPHP4 directly interacted with the kinase Lats1 and inhibited Lats1-mediated phosphorylation of the Yes-associated protein (YAP) and TAZ (transcriptional coactivator with PDZ-binding domain), leading to derepression of these protooncogenic transcriptional regulators. Moreover, NPHP4 induced release from 14-3-3 binding and nuclear translocation of YAP and TAZ, promoting TEA domain (TEAD)/TAZ/YAP-dependent transcriptional activity. Consistent with these data, knockdown of NPHP4 negatively affected cellular proliferation and TEAD/TAZ activity, essentially phenocopying loss of TAZ function. These data identify NPHP4 as a negative regulator of the Hippo pathway and suggest that NPHP4 regulates cell proliferation through its effects on Hippo signaling.


2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii22-ii23
Author(s):  
G Casati ◽  
L Giunti ◽  
A Iorio ◽  
A Marturano ◽  
I Sardi

Abstract BACKGROUND Glioblastoma (GBM) is a primary human malignant brain tumor, the most common in adults. Several studies have highlighted the Hippo-pathway as a cancer signalling network. The Hippo pathway is an evolutionarily conserved signal cascade, which is involved in the control of organ growth. Dysregulations among this pathway have been found in lung, ovarian, liver and colorectal cancer. The key downstream effector of the Hippo-pathway is the Yes-associated protein (YAP); in the nucleus, its function as transcription co-activator is to interact with transcription factors, resulting in the expression of target genes involved in pro-proliferating and anti-apoptotic programs. MATERIAL AND METHODS Using western blotting analysis, we determined the nuclear expression of YAP on three GBM cell lines (U87MG, T98G and A172). To investigate which inhibitors against the Hippo-pathway were the most efficient, we performed a cytotoxic assay: we treated all the three cell lines with different inhibitors such as Verteporfin (VP), Cytochalasin D (CIT), Latrunculin A (LAT), Dobutamine (DOB) and Y27632. Afterwards, we performed a treatment using Doxorubicin (DOX) combined with the inhibitors, evaluating its cytotoxic effect on our cell lines, through cell viability experiments. More western blotting experiments were performed to investigate the oncogenic role of YAP at nucleus level. Furthermore, preliminary experiments have been conducted in order to investigate the apoptosis, senescence and autophagy modulation due to the Hippo-pathway. RESULTS We showed our cell lines express nuclear YAP. We assessed the efficiency of the main inhibitors against Hippo-pathway, proving that VP, LAT A and CIT show a strong cytostatic effect, linked to time increase; plus we saw a cytotoxic effect on T98G. The association of DOX with selected inhibitors is able to reduce cell viability and nuclear YAP expression rate in all three GBM lines. Finally, preliminary experiments were set up to assess how and if the mechanisms of apoptosis, autophagy and senescence were affected by the Hippo-pathway. The combination of DOX with inhibitors promotes resistance to apoptosis. CONCLUSION Our results show that nuclear YAP is present in all tumor lines, thus confirming that this molecular pathway is functioning in GBM lines. Nuclear YAP is more highly expressed after DOX administration. Moreover, the combined treatment (DOX with Hippo-pathway inhibitors) reduces both cell proliferation and viability, and increases the rate of apoptosis. Preliminary experiments on senescence and autophagy were used to determine the best Hippo-pathway inhibitor. These data demonstrate that the Hippo-pathway plays a crucial role in GBM proliferation and resistance to apoptosis. Inhibiting this pathway and in particular the transcription factor YAP, in association with DOX, might be an excellent therapeutic target.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7579 ◽  
Author(s):  
Sosuke Fujita ◽  
Erina Kuranaga ◽  
Yu-ichiro Nakajima

Jellyfish have existed on the earth for around 600 million years and have evolved in response to environmental changes. Hydrozoan jellyfish, members of phylum Cnidaria, exist in multiple life stages, including planula larvae, vegetatively-propagating polyps, and sexually-reproducing medusae. Although free-swimming medusae display complex morphology and exhibit increase in body size and regenerative ability, their underlying cellular mechanisms are poorly understood. Here, we investigate the roles of cell proliferation in body-size growth, appendage morphogenesis, and regeneration using Cladonema pacificum as a hydrozoan jellyfish model. By examining the distribution of S phase cells and mitotic cells, we revealed spatially distinct proliferating cell populations in medusae, uniform cell proliferation in the umbrella, and clustered cell proliferation in tentacles. Blocking cell proliferation by hydroxyurea caused inhibition of body size growth and defects in tentacle branching, nematocyte differentiation, and regeneration. Local cell proliferation in tentacle bulbs is observed in medusae of two other hydrozoan species, Cytaeis uchidae and Rathkea octopunctata, indicating that it may be a conserved feature among hydrozoan jellyfish. Altogether, our results suggest that hydrozoan medusae possess actively proliferating cells and provide experimental evidence regarding the role of cell proliferation in body-size control, tentacle morphogenesis, and regeneration.


Sign in / Sign up

Export Citation Format

Share Document