CFD PREDICTION OF THE TRAJECTORY OF HOT EXHAUST FROM THE FUNNEL OF A NAVAL SHIP IN THE PRESENCE OF SHIP SUPERSTRUCTURE

2021 ◽  
Vol 156 (A1) ◽  
Author(s):  
R Vijayakumar ◽  
S N Singh ◽  
V Seshadri

The superstructure of a modern naval ship is fitted with multitude of sensors for electronic surveillance, weapon discharge, navigation, communication and varieties of deck handling equipment. Locating these electronic equipment/sensors and its integration on board is of paramount importance to achieve optimal operational performance of the naval vessel. Among the many problems in locating these sensors (like stability, EMC EMI etc.,), the presence of entrapped hot gases from the ship exhaust affects the functioning of these electronics. Hence the prediction of temperature profile and trajectories of the ship exhaust plume from the funnel around the superstructure during the design stage is a mandatory requirement for positioning the sensors on superstructure. This trajectory prediction is not amenable to theoretical analysis or empirical calculation procedures in the modern warship superstructure. Experimental and CFD studies conducted on ship superstructure are the only reliable tools that are available to estimate temperature field as well as to study the exhaust smoke superstructure interaction on ships. This paper presents the CFD simulation of the published results for two cases, namely hot jet in a cross flow and hot exhaust with a cross flow on a generic frigate. Simulations have been made using k-ɛ turbulence model with different values of turbulent Schmidt number. It has been observed that temperature field is predicted with reasonable accuracy with turbulent Schmidt number of 0.2.

2014 ◽  
Vol 156 (A1) ◽  

The superstructure of a modern naval ship is fitted with multitude of sensors for electronic surveillance, weapon discharge, navigation, communication and varieties of deck handling equipment. Locating these electronic equipment/sensors and its integration on board is of paramount importance to achieve optimal operational performance of the naval vessel. Among the many problems in locating these sensors (like stability, EMC EMI etc.,), the presence of entrapped hot gases from the ship exhaust affects the functioning of these electronics. Hence the prediction of temperature profile and trajectories of the ship exhaust plume from the funnel around the superstructure during the design stage is a mandatory requirement for positioning the sensors on superstructure. This trajectory prediction is not amenable to theoretical analysis or empirical calculation procedures in the modern warship superstructure. Experimental and CFD studies conducted on ship superstructure are the only reliable tools that are available to estimate temperature field as well as to study the exhaust smoke superstructure interaction on ships. This paper presents the CFD simulation of the published results for two cases, namely hot jet in a cross flow and hot exhaust with a cross flow on a generic frigate. Simulations have been made using k-ɛ turbulence model with different values of turbulent Schmidt number. It has been observed that temperature field is predicted with reasonable accuracy with turbulent Schmidt number of 0.2.


2019 ◽  
Vol 17 (05) ◽  
pp. 1940011
Author(s):  
George Xu ◽  
Arthur Lim ◽  
Harish Gopalan ◽  
Jing Lou ◽  
Hee Joo Poh

Pollutant control is one of the key concerns in the design of buildings, for the sake of occupational health, safety and environment sustainability. In particular, risk analyses related to emergency leakage of chemicals from storage tanks or chemical processes have aroused increasing attentions in recent days, as well as the effectiveness of mitigation measures in order to eliminate, reduce and control the risks. In this paper, a CFD methodology with nonreactive chemical gases treated as passive scalars has been developed to simulate the gas dispersion across urban environments, subject to atmospheric boundary layer wind conditions. Special treatments to maintain the consistency in atmospheric boundary layer flow profiles, turbulence modeling and boundary conditions have also been accounted for. The proposed CFD methodology for gas dispersion has been implemented in the open source CFD code — OpenFOAM. It has been validated by modeling the gas dispersions for two urban-related test cases: the CODASC street canyon test case measured in a laboratory wind tunnel and the Mock Urban Setting Test (MUST) field experiment conducted in the desert area of Utah State. Effects of turbulent Schmidt number (Sct have been primarily addressed in this study. Statistical analyses about the discrepancies between predicted and experimental data have been carried out and statistical performance measures are used to quantify the accuracy of the proposed methodology. Simulations results from passive scalar transport equation demonstrate good agreement with experimental data, though tracer gases heavier than the atmospheric air were used in both the measurements. Furthermore, sensitivity tests also indicate that the accuracy of the simulation results is sensitive to the value of turbulent Schmidt number.


Author(s):  
Amin Akbari ◽  
Scott Hill ◽  
Vincent McDonell ◽  
Scott Samuelsen

The mixing of fuel and air in combustion systems plays a key role in overall operability and emissions performance. Such systems are also being looked to for operation on a wide array of potential fuel types, including those derived from renewable sources such as biomass or agricultural waste. The optimization of premixers for such systems is greatly enhanced if efficient design tools can be utilized. The increased capability of computational systems has allowed tools such as computational fluid dynamics to be regularly used for such purpose. However, to be applied with confidence, validation is required. In the present work, a systematic evaluation of fuel mixing in a specific geometry which entails cross flow fuel injection into axial non-swirling air streams has been carried out for methane and hydrogen. Fuel concentration is measured at different planes downstream of the point of injection. In parallel, different CFD approaches are used to predict the concentration fields resulting from the mixing of fuel and air. Different steady turbulence models including variants of Reynolds Averaged Navier Stokes (RANS) have been applied. In addition, unsteady RANS and Large Eddy Simulation (LES) are used. To accomplish mass transport with any of the RANS approaches, the concept of the turbulent Schmidt number is generally used. As a result, the sensitivity of the RANS simulations to different turbulent Schmidt number values is also examined. In general, the results show that the Reynolds Stress Model, with use of an appropriate turbulent Schmidt number for the fuel used, provides the best agreement with the measured values of the variation in fuel distribution over a given plane in a relatively time efficient manner. It is also found that, for a fixed momentum flux ratio, both hydrogen and methane penetrate and disperse in a similar manner for the flowfield studied despite their significant differences in density and diffusivity.


Author(s):  
Shan Li ◽  
Shanshan Zhang ◽  
Lingyun Hou ◽  
Zhuyin Ren

Modern gas turbines in power systems employ lean premixed combustion to lower flame temperature and thus achieve low NOx emissions. The fuel/air mixing process and its impacts on emissions are of paramount importance to combustor performance. In this study, the mixing process in a methane-fired model combustor was studied through an integrated experimental and numerical study. The experimental results show that at the dump location, the time-averaged fuel/air unmixedness is less than 10% over a wide range of testing conditions, demonstrating the good mixing performance of the specific premixer on the time-averaged level. A study of the effects of turbulent Schmidt number on the unmixedness prediction shows that for the complex flow field involved, it is challenging for Reynolds-Averaged Navier-Stokes (RANS) simulations with constant turbulent Schmidt number to accurately predict the mixing process throughout the combustor. Further analysis reveals that the production and scalar dissipation are the key physical processes controlling the fuel/air mixing. Finally, the NOx formation in this model combustor was analyzed and modelled through a flamelet-based approach, in which NOx formation is characterized through flame-front NOx and its post-flame formation rate obtained from one-dimensional laminar premixed flames. The effect of fuel/air unmixedness on NOx formation is accounted for through the presumed probability density functions (PDF) of mixture fraction. Results show that the measured NOx in the model combustor are bounded by the model predictions with the fuel/air unmixedness being 3% and 5% of the maximum unmixedness. In the context of RANS, the accuracy in NOx prediction depends on the unmixedness prediction which is sensitive to turbulent Schmidt number.


1972 ◽  
Vol 14 (6) ◽  
pp. 411-423 ◽  
Author(s):  
H. Marsh ◽  
J. H. Horlock

Equations for the passage-averaged flow in a cascade are used to derive the momentum integral equations governing the development of the wall boundary layer in turbomachines. Several existing methods of analysis are discussed and an alternative approach is given which is based on the passage-averaged momentum integral equations. The analysis leads to an anomaly in the prediction of the cross flow and to avoid this it is suggested that for the many-bladed cascade there should be a variation of the blade force through the boundary layer. This variation of the blade force can be included in the analysis as a force deficit integral. The growth of the wall boundary layer has been calculated by four methods and the predictions are compared with two sets of published experimental results for flow through inlet guide vanes.


2007 ◽  
Vol 13 (3) ◽  
pp. 167-168 ◽  
Author(s):  
Aleksandar Dudukovic ◽  
Rada Pjanovic

The scope of this paper is to explain effect of eddy viscosity and turbulent Schmidt number on mass transfer rate. New, theoretically based correlation for gas-liquid mass transfer coefficients are proposed.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hassan Waqas ◽  
Shan Ali Khan ◽  
Metib Alghamdi ◽  
Taseer Muhammad

In this article, we examined the magnetized flow of ethylene glycol- 50 − 50 % water-based nanoliquids comprising molybdenum disulfide ( MoS 2 ) across a stretching sheet. Flow properties were examined under the impacts of magnetic field and thermal radiation. The behavior of heat generation/absorption is also accounted. Similarity transformations are used on the system of PDEs to get nondimensional ODEs. The obtained nondimensional ODEs are solved with the help of the Runge–Kutta–Fehlberg method via computational software MATHEMATICA. The behavior of prominent parameters for velocity and thermal profiles is plotted graphically and discussed in detail. It is depicted that the temperature field is upgraded with increase in the heat generation/absorption parameter. Furthermore, a larger Schmidt number causes reduction in the concentration field. The current formulated model may be useful in biomedical engineering, biotechnology, nanotechnology, biosensors, crystal growth, plastic industries, and mineral and cleaning oil manufacturing.


2020 ◽  
Vol 12 (23) ◽  
pp. 10173
Author(s):  
Vladimíra Michalcová ◽  
Kamila Kotrasová

Numerical simulation of fluid flow and heat or mass transfer phenomenon requires numerical solution of Navier–Stokes and energy-conservation equations, together with the continuity equation. The basic problem of solving general transport equations by the Finite Volume Method (FVM) is the exact calculation of the transport quantity. Numerical or false diffusion is a phenomenon of inserting errors in calculations that threaten the accuracy of the computational solution. The paper compares the physical accuracy of the calculation in the Computational Fluid Dynamics (CFD) code in Ansys Fluent using the offered discretization calculation schemes, methods of solving the gradients of the transport quantity on the cell walls, and the influence of the mesh type. The paper offers possibilities on how to reduce numerical errors. In the calculation area, the sharp boundary of two areas with different temperatures is created in the flow direction. The three-dimensional (3D) stationary flow of the fictitious gas is simulated using FVM so that only advective transfer, in terms of momentum and heat, arises. The subject of the study is to determine the level of numerical diffusion (temperature field scattering) and to evaluate the values of the transport quantity (temperature), which are outside the range of specified boundary conditions at variously set calculation parameters.


Sign in / Sign up

Export Citation Format

Share Document