scholarly journals The Transcriptional Modulation of Inositols and Raffinose Family Oligosaccharides Pathways in Plants — An (A)Biotic Stress Perspective

Author(s):  
José Ribamar Costa Ferreira Neto ◽  
Amanda Cordeiro de Melo Souza ◽  
Manassés Daniel da Silva ◽  
Ana Maria Benko-Iseppon ◽  
Valesca Pandolfi ◽  
...  

2019 ◽  
Vol 10 ◽  
Author(s):  
Ana Margarida Fortes ◽  
Patricia Agudelo-Romero ◽  
Diana Pimentel ◽  
Noam Alkan




2010 ◽  
Vol 32 (6) ◽  
pp. 561-570
Author(s):  
Zhao-Hui XIE
Keyword(s):  


Crop Science ◽  
2002 ◽  
Vol 42 (2) ◽  
pp. 656 ◽  
Author(s):  
D. Ames Herbert
Keyword(s):  


2012 ◽  
Vol 110 ◽  
pp. 578-586 ◽  
Author(s):  
Priti Katrolia ◽  
Huiyong Jia ◽  
Qiaojuan Yan ◽  
Shuang Song ◽  
Zhengqiang Jiang ◽  
...  




Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 776
Author(s):  
Shipra Kumari ◽  
Bashistha Kumar Kanth ◽  
Ju young Ahn ◽  
Jong Hwa Kim ◽  
Geung-Joo Lee

Genome-wide transcriptome analysis using RNA-Seq of Lilium longiflorum revealed valuable genes responding to biotic stresses. WRKY transcription factors are regulatory proteins playing essential roles in defense processes under environmental stresses, causing considerable losses in flower quality and production. Thirty-eight WRKY genes were identified from the transcriptomic profile from lily genotypes, exhibiting leaf blight caused by Botrytis elliptica. Lily WRKYs have a highly conserved motif, WRKYGQK, with a common variant, WRKYGKK. Phylogeny of LlWRKYs with homologous genes from other representative plant species classified them into three groups- I, II, and III consisting of seven, 22, and nine genes, respectively. Base on functional annotation, 22 LlWRKY genes were associated with biotic stress, nine with abiotic stress, and seven with others. Sixteen unique LlWRKY were studied to investigate responses to stress conditions using gene expression under biotic and abiotic stress treatments. Five genes—LlWRKY3, LlWRKY4, LlWRKY5, LlWRKY10, and LlWRKY12—were substantially upregulated, proving to be biotic stress-responsive genes in vivo and in vitro conditions. Moreover, the expression patterns of LlWRKY genes varied in response to drought, heat, cold, and different developmental stages or tissues. Overall, our study provides structural and molecular insights into LlWRKY genes for use in the genetic engineering in Lilium against Botrytis disease.



Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kieu Thi Xuan Vo ◽  
Md Mizanor Rahman ◽  
Md Mustafizur Rahman ◽  
Kieu Thi Thuy Trinh ◽  
Sun Tae Kim ◽  
...  

AbstractBiotic stresses represent a serious threat to rice production to meet global food demand and thus pose a major challenge for scientists, who need to understand the intricate defense mechanisms. Proteomics and metabolomics studies have found global changes in proteins and metabolites during defense responses of rice exposed to biotic stressors, and also reported the production of specific secondary metabolites (SMs) in some cultivars that may vary depending on the type of biotic stress and the time at which the stress is imposed. The most common changes were seen in photosynthesis which is modified differently by rice plants to conserve energy, disrupt food supply for biotic stress agent, and initiate defense mechanisms or by biotic stressors to facilitate invasion and acquire nutrients, depending on their feeding style. Studies also provide evidence for the correlation between reactive oxygen species (ROS) and photorespiration and photosynthesis which can broaden our understanding on the balance of ROS production and scavenging in rice-pathogen interaction. Variation in the generation of phytohormones is also a key response exploited by rice and pathogens for their own benefit. Proteomics and metabolomics studies in resistant and susceptible rice cultivars upon pathogen attack have helped to identify the proteins and metabolites related to specific defense mechanisms, where choosing of an appropriate method to identify characterized or novel proteins and metabolites is essential, considering the outcomes of host-pathogen interactions. Despites the limitation in identifying the whole repertoire of responsive metabolites, some studies have shed light on functions of resistant-specific SMs. Lastly, we illustrate the potent metabolites responsible for resistance to different biotic stressors to provide valuable targets for further investigation and application.



Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 514
Author(s):  
Sulukhan Temirbekova ◽  
Ibrahim Jafarov ◽  
Ivan Kulikov ◽  
Yuliya Afanaseva ◽  
Elena Kalashnikova

This paper presents the results of the 50 year-long research into the winter wheat gene pool from the VIR world collection in the Moscow region to assess biotic stress resistance following N.I. Vavilov’s concept of the ‘ideal variety’, proposed in 1935. The Federal Scientific Selection and Technology Center for Horticulture and Nursery was responsible for the field studies of winter wheat, and the All-Russian Research Institute of Phytopathology and Russian State Agrarian University—Moscow Timiryazev Agricultural Academy—for phytopathological studies. The wheat collection was studied in compliance with the VIR Methodological Guidelines using the International COMECON list of descriptors for the genus Triticum L. Resistance against the enzyme–mycotic depletion of seeds (EMDS) was tested using original techniques. It was found that annual brown rust and powdery mildew attacks in the collection’s winter wheat samples caused no significant economic damage. One case of Septoria head and leaf blotch, two cases of Fusarium head blight, one case of root rot, one case of barley yellow dwarf virus, 20 cases of EMDS, and three cases of 3rd-degree EMDS, i.e., seed germination in an ear, were recorded. The parent material resistant to the biotic stresses of the region was selected for breeding. Domestic breeders have created outstanding wheat varieties close to the ‘ideal’ as noted by N.I. Vavilov.



Sign in / Sign up

Export Citation Format

Share Document