scholarly journals Advanced Sample Preparation Techniques for Surface Spectroscopy Analysis of Organic: Inorganic Hybrid Silica Particles

2021 ◽  
Author(s):  
Harekrishna Panigrahi ◽  
Smrutirekha Mishra ◽  
Suraj Kumar Tripathy

Silica due to its large inorganic amorphous wall and hydrophilic surface properties renders its suitability for designing different varieties of organic–inorganic silica-based materials. Characterization of such hybrid silica-based materials is one of the fascinating as well as challenging topics to be covered. Surface analysis of these hybrid materials can be done utilizing various techniques, out of which X-ray photoelectron spectroscopy (XPS), 29Si Solid-state Nuclear magnetic resonance (NMR) spectroscopy, and Fourier-transform infrared spectroscopy (FTIR) is the most ideal ones. Thus, before analyzing these silica materials, it requires a massive study on its sample preparation for appropriate characterization of the organic molecules present in the inorganic network. Hence, this chapter will give a brief elucidation of the sample preparation techniques for analyzing the hybrid materials utilizing the above instrumentation techniques.

2001 ◽  
Vol 16 (10) ◽  
pp. 2805-2809 ◽  
Author(s):  
Yang Jiang ◽  
Yue Wu ◽  
Shengwen Yuan ◽  
Bo Xie ◽  
Shuyuan Zhang ◽  
...  

A simple and convenient solvothermal reaction has been developed to produce CuInS2 nanorods and nanotubes from the elements in ethylenediamine at 280 °C. The products were characterized by x-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, and x-ray photoelectron spectroscopy. Analysis shows that the coordinating ability of ethylenediamine and the existence of liquid In may play important roles in the growth of one-dimension nanocrystallites and the electron-transfer reaction. In addition, spherical CuInS2 micrometer particles were obtained at 350 °C.


2012 ◽  
Vol 194 ◽  
pp. 129-132 ◽  
Author(s):  
Kwong Kau Tiong ◽  
Cheng Hsien Lin ◽  
Yi Min Chen ◽  
Ying Sheng Huang ◽  
Kuei Yi Lee ◽  
...  

Large surface area nanostructural IrOx films were deposited on stainless steel substrates by reactive radio frequency magnetron sputtering using Ir metal target. The structural and spectroscopic properties of the nanostructural IrOx were characterized. The micrographs of field emission scanning electron microscopy showed the formation of folded leaves with chiffon-like structure for the as-deposited samples. X-ray photoelectron spectroscopy analysis provided the information of the oxidation states and the stoichiometry of IrOxNL. Raman spectra revealed the amorphous-like phase of the as-deposited nanostructural IrOx. The chiffon-like structure provides ultra-high surface area for electrical charge storage which makes the IrOxNL as an attractive candidate for the supercapacitor application.


1992 ◽  
Vol 70 (10-11) ◽  
pp. 875-880 ◽  
Author(s):  
J. P. McCaffrey ◽  
G. I. Sproule ◽  
R. Sargent

Techniques employed for the preparation of transmission electron microscopy (TEM) samples can introduce artifacts that obscure subtle detail in the materials being studied. Traditional semiconductor sample preparation techniques rely heavily on ion milling, which leaves amorphous layers on ion milled surfaces and some intermixing across interfaces, thus degrading the TEM images of these samples. Experimental results of the extent of this amorphization and intermixing are presented for silicon-based semiconductor samples, and methods to minimize these effects are suggested. These methods include variations in ion milling parameters that reduce the extent of the artifacts, and improvements in the small-angle cleavage technique that eliminate these artifacts completely.


2016 ◽  
Vol 196 (1) ◽  
pp. 111-120
Author(s):  
M. L. Dunzik-Gougar ◽  
I. J. van Rooyen ◽  
C. M. Hill ◽  
T. Trowbridge ◽  
J. Madden ◽  
...  

2009 ◽  
Vol 17 (2) ◽  
pp. 38-41 ◽  
Author(s):  
Jeanne Ayache ◽  
Luc Beaunier ◽  
Jacqueline Boumendil ◽  
Gabrielle Ehret ◽  
Danièle Laub

Sample preparation is of central importance for the characterization of materials by transmission electron microscopy (TEM). As a guide to researchers seeking practical help on the use of all types of TEM sample preparation techniques, we have created an Internet website. This website has been designed in French and is now translated into English. The website is accessible free of charge.The TEMSAMPREP website, figure 1 http://temsamprep.in2p3.fr/, is the result of a synergistic effort of an atypical team of five electron microscopy scientists having different research specialties in physics, mineralogy, material science, and biology. They shared five years of human adventure in creating the website to transmit their 30 years of TEM experience to the international community.


2000 ◽  
Vol 78 (11) ◽  
pp. 1519-1525 ◽  
Author(s):  
Jean-Philippe Bezombes ◽  
Claude Chuit ◽  
Robert JP Corriu ◽  
Catherine Reyé

The hydrolysis-polycondensation by the sol-gel process of the aromatic diphosphines (X3SiC6H4)2PC6H4P(C6H4SiX3)2, which are rigid molecules bearing four hydrolysable SiX3 groups (X = OiPr, H), leads to new organic-inorganic hybrid materials, characterized by solid state 13C, 29Si, and 31P NMR spectroscopies. The accessibility of the phosphorus centres incorporated into the xerogel obtained from the diphosphine with X = OiPr has been studied. All the phosphorus atoms reacted quantitatively with H2O2, S8, and CH3I but only 20% with the more bulky reagent W(CO)5·THF. This result is explained by the rigidity of the inorganic network resulting from the high number of hydrolysable Si-OiPr groups in the precursor.Key words : Diphosphines, sol-gel process, xerogels, solid 31P NMR.


Author(s):  
Salim Barbhuiya

Nanoindentation technique is used to assess the mechanical properties of materials at nano-level. A very small tip (usually diamond) produces indents at the surface of the material to be tested. A load vs. deflection curve is generated and is used to study the elastic properties of materials. Generally, it is used for obtaining the hardness and Young's modulus of materials at nano-meter scale. Currently, the method to evaluate the mechanical properties by nanoindentation is restricted to homogeneous materials. Cement-based materials are heterogeneous in nature. Therefore, nanoindentation study of cement-based materials is critical and requires several important steps, which need to be performed accurately. This chapter provides a review of the theory of nanoindentation, instruments being used for nanoindentation, sample preparation techniques, indentation strategy, and determination of nanomechanical properties and data analysis for cement-based materials.


Sign in / Sign up

Export Citation Format

Share Document