scholarly journals Orthodontics and the Periodontium: A Symbiotic Relationship

2021 ◽  
Author(s):  
Betsy Sara Thomas ◽  
Mohan Alexander

The force applied by the orthodontist to facilitate the orderly movement of teeth to their new position may have deleterious effects on the most important structure involved in the procedure—the periodontium. This chapter endeavors to provide an overview of the biological processes that play a role in achieving the patient’s as well as the orthodontist’s objective.

2021 ◽  
Vol 8 ◽  
Author(s):  
Salvador Meseguer

Mitochondria are not only important as energy suppliers in cells but also participate in other biological processes essential for cell growth and survival. They arose from α-proteobacterial predecessors through endosymbiosis and evolved transferring a large part of their genome to the host cell nucleus. Such a symbiotic relationship has been reinforced over time through increasingly complex signaling mechanisms between the host cell and mitochondria. So far, we do not have a complete view of the mechanisms that allow the mitochondria to communicate their functional status to the nucleus and trigger adaptive and compensatory responses. Recent findings place two classes of small non-coding RNAs (sncRNAs), microRNAs (miRNAs), and tRNA-derived small fragments, in such a scenario, acting as key pieces in the mitochondria–nucleus cross-talk. This review highlights the emerging roles and the interrelation of these sncRNAs in different signaling pathways between mitochondria and the host cell. Moreover, we describe in what way alterations of these complex regulatory mechanisms involving sncRNAs lead to diseases associated with mitochondrial dysfunction. In turn, these discoveries provide novel prognostic biomarker candidates and/or potential therapeutic targets.


Dose-Response ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 155932582096385
Author(s):  
Aihong Mao ◽  
Chao Sun ◽  
Takanori Katsube ◽  
Bing Wang

Gastrointestinal (GI) microbiota maintains a symbiotic relationship with the host and plays a key role in modulating many important biological processes and functions of the host, such as metabolism, inflammation, immune and stress response. It is becoming increasingly apparent that GI microbiota is susceptible to a wide range of environmental factors and insults, for examples, geographic location of birth, diet, use of antibiotics, and exposure to radiation. Alterations in GI microbiota link to various diseases, including radiation-induced disorders. In addition, GI microbiota composition could be used as a biomarker to estimate radiosusceptibility and radiation health risk in the host. In this minireview, we summarized the documented studies on radiation-induced alterations in GI microbiota and the relationship between GI microbiota and radiosusceptibility of the host, and mainly discussed the possible mechanisms underlying GI microbiota influencing the outcome of radiation response in humans and animal models. Furthermore, we proposed that GI microbiota manipulation may be used to reduce radiation injury and improve the health of the host.


Author(s):  
K.W. Lee ◽  
R.H. Meints ◽  
D. Kuczmarski ◽  
J.L. Van Etten

The physiological, biochemical, and ultrastructural aspects of the symbiotic relationship between the Chlorella-like algae and the hydra have been intensively investigated. Reciprocal cross-transfer of the Chlorellalike algae between different strains of green hydra provide a system for the study of cell recognition. However, our attempts to culture the algae free of the host hydra of the Florida strain, Hydra viridis, have been consistently unsuccessful. We were, therefore, prompted to examine the isolated algae at the ultrastructural level on a time course.


Author(s):  
R. N. Tomas

Peridinium balticum appears to be unusual among the dinoflagellates in that it possesses two DNA-containing structures as determined by histochemical techniques. Ultrastructurally, the two dissimilar nuclei are contained within different protoplasts; one of the nuclei is characteristically dinophycean in nature, while the other is characteristically eucaryotic. The chloroplasts observed within P. balticum are intrinsic to an eucaryotic photosynthetic endosymbiont and not to the dinoflagellate. These organelles are surrounded by outpocketings of endoplasmic reticulum which are continuous with the eucaryotic nuclear envelope and are characterized by thylakoids composed of three apposed lamellae. Girdle lamellae and membranebounded interlamellar pyrenoids are also present. Only the plasmalemma of the endosymbiont segregates its protoplast from that of the dinophycean cytoplasm. The exact nature of this symbiotic relationship is at present not known.


Author(s):  
Leslie M. Loew

A major application of potentiometric dyes has been the multisite optical recording of electrical activity in excitable systems. After being championed by L.B. Cohen and his colleagues for the past 20 years, the impact of this technology is rapidly being felt and is spreading to an increasing number of neuroscience laboratories. A second class of experiments involves using dyes to image membrane potential distributions in single cells by digital imaging microscopy - a major focus of this lab. These studies usually do not require the temporal resolution of multisite optical recording, being primarily focussed on slow cell biological processes, and therefore can achieve much higher spatial resolution. We have developed 2 methods for quantitative imaging of membrane potential. One method uses dual wavelength imaging of membrane-staining dyes and the other uses quantitative 3D imaging of a fluorescent lipophilic cation; the dyes used in each case were synthesized for this purpose in this laboratory.


2003 ◽  
Vol 39 ◽  
pp. 11-24 ◽  
Author(s):  
Justin V McCarthy

Apoptosis is an evolutionarily conserved process used by multicellular organisms to developmentally regulate cell number or to eliminate cells that are potentially detrimental to the organism. The large diversity of regulators of apoptosis in mammalian cells and their numerous interactions complicate the analysis of their individual functions, particularly in development. The remarkable conservation of apoptotic mechanisms across species has allowed the genetic pathways of apoptosis determined in lower species, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster, to act as models for understanding the biology of apoptosis in mammalian cells. Though many components of the apoptotic pathway are conserved between species, the use of additional model organisms has revealed several important differences and supports the use of model organisms in deciphering complex biological processes such as apoptosis.


2001 ◽  
Vol 6 (3) ◽  
pp. 172-176 ◽  
Author(s):  
Lawrence A. Pervin

David Magnusson has been the most articulate spokesperson for a holistic, systems approach to personality. This paper considers three concepts relevant to a dynamic systems approach to personality: dynamics, systems, and levels. Some of the history of a dynamic view is traced, leading to an emphasis on the need for stressing the interplay among goals. Concepts such as multidetermination, equipotentiality, and equifinality are shown to be important aspects of a systems approach. Finally, attention is drawn to the question of levels of description, analysis, and explanation in a theory of personality. The importance of the issue is emphasized in relation to recent advances in our understanding of biological processes. Integrating such advances into a theory of personality while avoiding the danger of reductionism is a challenge for the future.


1999 ◽  
Vol 82 (08) ◽  
pp. 305-311 ◽  
Author(s):  
Yuri Koshelnick ◽  
Monika Ehart ◽  
Hannes Stockinger ◽  
Bernd Binder

IntroductionThe urokinase-urokinase receptor (u-PA-u-PAR) system seems to play a crucial role in a number of biological processes, including local fibrinolysis, tumor invasion, angiogenesis, neointima and atherosclerotic plaque formation, inflammation, and matrix remodeling during wound healing and development.1-6 Binding of urokinase to its specific receptor provides cells with a localized proteolytic potential. It stimulates conversion of cell surface-bound plasminogen into active plasmin, which, in turn, is required for proteolytic degradation of basement membrane components, including fibronectin, collagen, laminin, and proteoglycan core proteins.7 Moreover, plasmin activates other matrix-degrading enzymes, such as matrix metalloproteinases.8 Overexpression of u-PA/u-PAR correlates with tumor invasion and metastasis formation,9-13 while reduction of cell-surface bound u-PA and inhibition of u-PAR expression leads to a significant decrease of invasive and metastatic activity.14 Specific antagonists that suppress binding of u-PA to u-PAR have been shown to inhibit cell-surface plasminogen activation, tumor growth, and angiogenesis both in vitro and in vivo models.15,16 Independently of its proteolytic activity, u-PA is implicated in many biological processes that seem to require u-PAR-mediated intracellular signal transduction, such as proliferation, chemotactic movement and adhesion, migration, and differentiation.17 Data obtained in the late 1980s indicated that u-PA not only provides cells with local proteolytic activity, but might also be capable of transducing signals to the cell.18-22 At that time, however, the u-PAR has just been isolated, cloned, and identified as a glycosylphosphatidylinositol (GPI)-linked protein and not a transmembrane protein. Signaling via the u-PAR was, therefore, regarded as being unlikely, and the effects of u-PA on cell proliferation18-22 were thought to be mediated by proteolytic activation of latent growth factors. The assumption of direct signaling via u-PAR was, in fact, considered controversial, until about 10 years later when a physical association between u-PAR and signaling proteins was found.23 From this report on, several proteins associated with u-PAR have been identified. Now, u-PAR seems to be part of a large “signalosome” associated and interacting with several proteins on both the outside and inside of the cell.


2017 ◽  
Vol 3 (3) ◽  
pp. 9-29
Author(s):  
Juan Llamas-Rodriguez

Borders and bodies are increasingly regulated by data-capturing mechanisms spread across the world through information and communication technologies. This article traces the features and implications of such a border-body datalogical entanglement through the figure of the drug mule. It analyzes government documents and recorded case studies to argue that this figure emerges from an assemblage of cultural narratives, legal structures, human labor, technical practices, and biological processes. The datalogical drug mule is already implicated in a struggle over what, and how, data is meaningful and actionable. Investigating this figure allows us to begin disentangling the data-driven mechanisms that constitute modern borders and bodies while at the same time accounting for analog continuities in contemporary practices of border security.


Sign in / Sign up

Export Citation Format

Share Document