scholarly journals Advances in Dropwise Condensation: Dancing Droplets

Author(s):  
Rongfu Wen ◽  
Xuehu Ma

Vapor condensation is a ubiquitous phase change phenomenon in nature, as well as widely exploited in various industrial applications such as power generation, water treatment and harvesting, heating and cooling, environmental control, and thermal management of electronics. Condensation performance is highly dependent on the interfacial transport and its enhancement promises considerable savings in energy and resources. Recent advances in micro/nano-fabrication and surface chemistry modification techniques have not only enabled exciting interfacial phenomenon and condensation enhancement but also furthered the fundamental understanding of interfacial wetting and transport. In this chapter, we present an overview of dropwise condensation heat transfer with a focus on improving droplet behaviors through surface design and modification. We briefly summarize the basics of interfacial wetting and droplet dynamics in condensation process, discuss the underlying mechanisms of droplet manipulation for condensation enhancement, and introduce some emerging works to illustrate the power of surface modification. Finally, we conclude this chapter by providing the perspectives for future surface design in the field of condensation enhancement.

2021 ◽  
Author(s):  
Tingting Chen ◽  
Yu Sheng ◽  
Zhaodong Hao ◽  
Xiaofei Long ◽  
Fangfang Fu ◽  
...  

Abstract Polyploidy generally provides an advantage in phenotypic variation and growth vigor. However, the underlying mechanisms remain poorly understood. The tetraploid L. sino-americanum exhibits altered morphology compared to its diploid counterpart, including larger, thicker and deeper green leaves, bigger stomata, thicker stems and increased tree height. Such characteristics can be useful in ornamental and industrial applications. To elucidate the molecular mechanisms behind this variation, we performed a comparative transcriptome and proteome analysis. Our transcriptome data indicated that some photosynthesis genes and pathways were differentially altered and enriched in tetraploid L. sino-americanum, mainly related to F-type ATPase, the cytochrome b6/f complex, photosynthetic electron transport, the light harvesting chlorophyll protein complexes, photosystem I and II. Most of the differentially expressed proteins we could identify are also involved in photosynthesis. Our physiological results showed that tetraploids have an enhanced photosynthetic capacity, concomitant with great levels of sugar and starch in leaves. This suggests that tetraploid L. sino-americanum might experience comprehensive transcriptome reprogramming of genes related to photosynthesis. This study has especially emphasized molecular changes involved in photosynthesis that accompany polyploidy, and provides a possible explanation for the altered phenotype of polyploidy plants in comparison to their diploid form.


2013 ◽  
Vol 233 ◽  
pp. 131-136 ◽  
Author(s):  
Eunseuk Park ◽  
Sungmin Chin ◽  
Yeon Seok Kim ◽  
Gwi-Nam Bae ◽  
Jongsoo Jurng

Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 343 ◽  
Author(s):  
Koji Hasegawa ◽  
Ayumu Watanabe ◽  
Akiko Kaneko ◽  
Yutaka Abe

The contactless coalescence of a droplet is of paramount importance for physical and industrial applications. This paper describes a coalescence method to be used mid-air via acoustic levitation using an ultrasonic phased array system. Acoustic levitation using ultrasonic phased arrays provides promising lab-on-a-drop applications, such as transportation, coalescence, mixing, separation, evaporation, and extraction in a continuous operation. The mechanism of droplet coalescence in mid-air may be better understood by experimentally and numerically exploring the droplet dynamics immediately before the coalescence. In this study, water droplets were experimentally levitated, transported, and coalesced by controlled acoustic fields. We observed that the edges of droplets deformed and attracted each other immediately before the coalescence. Through image processing, the radii of curvature of the droplets were quantified and the pressure difference between the inside and outside a droplet was simulated to obtain the pressure and velocity information on the droplet’s surface. The results revealed that the sound pressure acting on the droplet clearly decreased before the impact of the droplets. This pressure on the droplets was quantitatively analyzed from the experimental data. Our experimental and numerical results provide deeper physical insights into contactless droplet manipulation for futuristic lab-on-a-drop applications.


Author(s):  
Hualing Zhang ◽  
Liu Chao

The model of two phases of liquid and vapor flow and vapor condensation under the condition of exerted force was established in parallel nanochannel. Fluid was water molecular and the solid walls are composed of Pt atoms. The process of vapor condensation in nanochannel wall was simulated by molecular dynamic simulation. The different flow patterns of the condensation process of superheated water vapor, which mainly were annular flow, injection flow, slug flow, bubble flow and shrinking bubble flow, were observed under different conditions. For low pressure of water vapor, a new flow pattern which was named as fluctuation flow appeared during condensation process. The simulation results agreed very well with the experimental results provided by references.


2004 ◽  
Vol 283 (1) ◽  
pp. 8-15 ◽  
Author(s):  
D. Li ◽  
C.J. Choi ◽  
J.H. Yu ◽  
B.K. Kim ◽  
Z.D. Zhang

Author(s):  
Donguk Suh ◽  
Kenji Yasuoka ◽  
Xiao Cheng Zeng

Vapor condensation on silicon nanotubes has been simulated by classical molecular dynamics to understand how the nucleation and condensation process for pores is affected. Two different nanotube aspect ratios were examined to see if there are growth rate changes. The rate for the two different types of nanotubes did not show significant variation meaning that the aspect ratio is an insignificant factor to enhance condensation. This result is consistent with previous nanorod studies. The supersaturated vapor gathered both inside and outside of the tube. Unlike the growth rate, however, the occurrence of homogeneous nucleation was hindered contrary to other basic geometries in previous studies.


Sign in / Sign up

Export Citation Format

Share Document