scholarly journals Production Technology of Peach, Plum and Apricot in India

Prunus ◽  
2020 ◽  
Author(s):  
Bhende Siddhesh Shamrao

In this chapter production technology of peach, plum and apricot in India is elaborated in detail in relation to introduction, origin and distribution of crop, importance and uses, morphological features of tress, other related species involved, climate and soil requirement, varieties, propagation and raising of rootstocks, planting and planting densities, cropping systems, manure and fertilisers application, cultural practices, weed management, orchard floor management, after care training and pruning, pollination and pollinizers, flowering and crop regulation, use of growth regulators, fruiting in the crop, fruit thinning and drop, maturity and harvesting, post-harvest management, handling and storage, insects, pests and diseases, special production problems like low productivity, unfruitfulness and self-incompatibility, premature leaf fall, replant problem, alternate bearing and remedies and physiological disorders of the crop.

2009 ◽  
Vol 60 (5) ◽  
pp. 395 ◽  
Author(s):  
S. C. Peltzer ◽  
A. Hashem ◽  
V. A. Osten ◽  
M. L. Gupta ◽  
A. J. Diggle ◽  
...  

Growing agricultural crops in wide row spacings has been widely adopted to conserve water, to control pests and diseases, and to minimise problems associated with sowing into stubble. The development of herbicide resistance combined with the advent of precision agriculture has resulted in a further reason for wide row spacings to be adopted: weed control. Increased row spacing enables two different methods of weed control to be implemented with non-selective chemical and physical control methods utilised in the wide inter-row zone, with or without selective chemicals used on the on-row only. However, continual application of herbicides and tillage on the inter-row zone brings risks of herbicide resistance, species shifts and/or changes in species dominance, crop damage, increased costs, yield losses, and more expensive weed management technology.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1096D-1097
Author(s):  
Martin J. Bukovac ◽  
Jerry Hull ◽  
Paolo Sabbatini

For studies on blossom/fruit thinning in apple, tree selection is often based on uniformity of bloom/crop load, assuming that such trees exhibit greater uniformity to treatment. However, the literature is replete with data showing marked variation for a given treatment. We followed variation in bloom/crop density of spur-type `Delicious'/MM.106 and effect of ethephon applied in high crop years on return bloom/yield. Uniform trees (n = 95), under identical cultural practices, were selected for varying crop load. Return bloom, yield and fruit size were monitored over six years. General mean (X) for yield was 94 ± 25 kg/tree and bloom density, rated 1 to 10 (highest), was 5.4 ± 1.7. Annual yield deviated from X by +56 to –40% and bloom density by +49 to –42%. All trees were ranked (decreasing yield) and assigned to five percentile (PCTL) groups (1st, 81-100; 2nd, 61-80; 3rd, 41-60; 4th, 21-40; 5th, 0-20 kg/tree). Trees in each group were reassigned annually to the five PCPL groups for the next five years. Of trees in 1st PCTL (n = 19, X = 187 ± 10 kg/tree) in year one, 5, 5, 24, 0 and 63% placed in PCPL 1, 2, 3, 4, and 5, respectively, in year two. Of trees in 1st PCTL (5%) in year two, all placed in PCTL 2 in year three. Effect of ethephon [200 mg·L-1 at 3, 3 + 6, 3 + 6 + 9 weeks after full bloom (WAFB)] applied in on years to `Redchief', with strong alternate bearing, were evaluated for six years. Ethephon at 3 WAFB had no effect. Yield from multiple applications differed from control (NTC) in off years, but not from each other. Total yield (3 on + 3 off years) for the NTC and ethephon at 3 + 6 WAFB was similar (479 vs. 471 kg/tree). However, 64% of the total yield was produced in the on years and 36% in the off years in NTC vs. 56 and 44% in 3 + 6 WAFB, respectively.


HortScience ◽  
2013 ◽  
Vol 48 (3) ◽  
pp. 314-317
Author(s):  
Michael W. Smith ◽  
Becky S. Cheary

Alternate bearing of pecan [Carya illinoinensis (Wangenh.) K. Koch] remains the leading problem of the industry. Several cultural practices have been developed or improved to mitigate alternate bearing. Premature defoliation was one problem identified that substantially decreased return bloom. The objective of this study was to determine the response of individual shoots exposed to various defoliation treatments. In one study, individual vegetative or bearing shoots were hand-defoliated in mid-September. Defoliation was the basal one-half, distal one-half, entire shoot, or not defoliated. Another study applied the same defoliation treatments to bearing shoots in July, August, or September. Defoliation had minimal effects on return bloom and rarely affected the percentage of current-season shoots fruiting the next year. Defoliation date also had little effect on return bloom. These data indicate that individual shoot response to defoliation was not autonomous and has implications for determining crop overload and needed mechanical fruit thinning.


1998 ◽  
Vol 13 (3) ◽  
pp. 98-104 ◽  
Author(s):  
Robert McSorley

AbstractThe most widely used and successful cultural practices for managing plantparasitic nematodes are resistant cultivars and some elements of cropping systems, such as rotation crops, cover crops, or nematode-antagonistic crops. Exclusion and sanitation practices, such as use of nematode-free planting material, site selection, and weed management, are useful in limiting infestations. Soil solarization, organic amendments, biological control, fallow, flooding, timing of planting dates, or tillage practices may be helpful in some areas, but additional research is needed to optimize their use. Most management methods emphasize reduction of nematode populations, but improvement of crop tolerance to nematodes should not be overlooked. For their successful use, most of these alternative methods require detailed knowledge of nematode and plant biology and ecology, and it may be necessary to integrate several practices for maximum nematode suppression. Although the basic principles of nematode management are generally known, detailed data often are lacking on specific combinations of nematodes and host crop cultivars. Consequently, the availability of such data will likely determine whether nematodes can be managed successfully in a particular situation.


1994 ◽  
Vol 8 (2) ◽  
pp. 376-386 ◽  
Author(s):  
Andreas Zoschke

Herbicides are an integral part of farmers' cultural practices worldwide. Growing concerns about agrochemical residues in the environment and in the food supply require a critical discussion about how to secure the environmental fitness of any weed management practice. Promising ways to minimize herbicide consumption include the introduction of new (low-rate) chemistries, the low-rate concept, innovative formulations, application timing, and a cropping systems approach. However, many questions with regard to crop/weed dynamics in different agricultural production systems require answers before final recommendations can be made, and the farmer has to occupy a central part of our considerations. Besides conducting more basic weed research to reduce herbicide rates, it will be equally important to integrate the efforts of all parties involved and to improve the communication with our customers, including the public, environmental interest groups, and politicians. To be widely accepted, weed management practices for the future have to be adapted such that the respective requirements of environment, society, and economics are fully met.


2018 ◽  
Vol 98 (5) ◽  
pp. 1094-1101
Author(s):  
Elwin G. Smith ◽  
K. Neil Harker ◽  
John T. O’Donovan ◽  
T. Kelly Turkington ◽  
Robert E. Blackshaw ◽  
...  

With the increasing resistance of wild oat (Avena fatua L.) to herbicides, there is a need to evaluate the potential of alternative cropping systems based on integrated weed management principles. A 5-yr field study at eight sites across Canada was used to evaluate the profitability of alternative cropping systems that have the potential to control wild oat using cultural practices in conjunction with herbicides. Cultural practices included twice the recommended seeding rates, fall-seeded winter crops, barley (Hordeum vulgare L.) silage, fallow, and alfalfa (Medicago sativa L.). Seven of the 14 cropping systems in this study did not include wild oat herbicide for three consecutive years, controlling wild oat entirely by cultural practices. Cropping system profitability varied by location. For many locations, combinations of barley silage and fall-seeded winter crops without wild oat herbicide application were as profitable as a system of canola (Brassica napus L.) and wheat (Triticum aestivum L.) with wild oat herbicide applied every year. Unprofitable systems generally included those with fallow, alfalfa, and fall-seeded winter crops in regions with rates of high winter kill. Wild oat control can be achieved with diverse cropping systems that are as profitable as conventional annual cropping that relies on herbicide control of wild oat.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Federica Zanetti ◽  
Barbara Alberghini ◽  
Ana Marjanović Jeromela ◽  
Nada Grahovac ◽  
Dragana Rajković ◽  
...  

AbstractPromoting crop diversification in European agriculture is a key pillar of the agroecological transition. Diversifying crops generally enhances crop productivity, quality, soil health and fertility, and resilience to pests and diseases and reduces environmental stresses. Moreover, crop diversification provides an alternative means of enhancing farmers’ income. Camelina (Camelina sativa (L.) Crantz) reemerged in the background of European agriculture approximately three decades ago, when the first studies on this ancient native oilseed species were published. Since then, a considerable number of studies on this species has been carried out in Europe. The main interest in camelina is related to its (1) broad environmental adaptability, (2) low-input requirements, (3) resistance to multiple pests and diseases, and (4) multiple uses in food, feed, and biobased applications. The present article is a comprehensive and critical review of research carried out in Europe (compared with the rest of the world) on camelina in the last three decades, including genetics and breeding, agronomy and cropping systems, and end-uses, with the aim of making camelina an attractive new candidate crop for European farming systems. Furthermore, a critical evaluation of what is still missing to scale camelina up from a promising oilseed to a commonly cultivated crop in Europe is also provided (1) to motivate scientists to promote their studies and (2) to show farmers and end-users the real potential of this interesting species.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 550
Author(s):  
Panagiotis Kanatas ◽  
Ioannis Gazoulis ◽  
Ilias Travlos

Irrigation is an agronomic practice of major importance in alfalfa (Medicago sativa L), especially in the semiarid environments of Southern Europe. Field experimentation was conducted in Western Greece (2016–2018) to evaluate the effects of irrigation timing on weed presence, alfalfa yield performance, and forage quality. In a randomized complete block design (four replications), two cultivars (“Ypati 84” and “Hyliki”) were the main plots, while three irrigation timings were the subplots (split-plot). The irrigation timings were IT-1, IT-2, and IT-3, denoting irrigation 1 week before harvest, 1 week after harvest, and 2 weeks after harvest, respectively. IT-1 reduced Solanum nigrum L. density by 54% and 79% as compared to IT-3 and IT-2, respectively. Chenopodium album L. density was the highest under IT-2. IT-3 resulted in 41% lower Amaranthus retroflexus L. density in comparison to IT-2, while the lowest values were observed under IT-1. Stand density and stems·plant−1 varied between years (p ≤ 0.05). Mass·stem−1 and alfalfa forage yield were affected by the irrigation timings (p ≤ 0.001). Total weed density and forage yield were negatively correlated in both the second (R2 = 87.013%) and the fourth (R2 = 82.691%) harvests. IT-1 and IT-3 increased forage yield, leaf per stem ratio, and crude protein as compared to IT-2. Further research is required to utilize the use of cultural practices for weed management in perennial forages under different soil and climatic conditions.


2021 ◽  
Vol 7 (4) ◽  
pp. 283
Author(s):  
Pauline Dentika ◽  
Harry Ozier-Lafontaine ◽  
Laurent Penet

The transition toward sustainable agriculture requires rethinking cropping systems in the light of less intensive and chemically reliant practices. Weed management is one of the target practices to evolve cropping systems with decreased impact on the environment. While softened management will lead to increased weeds/crops coexistence, it is of importance to assess the relative benefits and drawbacks of new practices. Among the potential drawbacks of weeds/crops coexistence, disease risk may increase if weeds are hosting pathogens. In this study, we assessed the potential of weeds for hosting pathogenic generalist fungi known to translate into disease in crops. We first describe prevalence in fields after harvest and relate prevalence to species characteristics and communities. Then, we directly test the idea that weeds serve as inoculums sources during cropping with a natural experiment. This study highlights variation in host skill among feral weeds for Colletotrichum species, including potential congeneric sub-specialization on different weeds within communities. Last, prevalence within fields was more correlated to focal crop inoculation rates compared to local weed load, but there was a significant correlation effect with prevalence on weeds in the vicinity of fields, suggesting that weeds are mediating disease levels at the local scale, too. Results pointed to the importance of weed host skill in disease risk yet open the door to the potential control of pathogens via targeted weed management.


2020 ◽  
Vol 2 ◽  
Author(s):  
Nathalie Colbach ◽  
Sandrine Petit ◽  
Bruno Chauvel ◽  
Violaine Deytieux ◽  
Martin Lechenet ◽  
...  

The growing recognition of the environmental and health issues associated to pesticide use requires to investigate how to manage weeds with less or no herbicides in arable farming while maintaining crop productivity. The questions of weed harmfulness, herbicide efficacy, the effects of herbicide use on crop yields, and the effect of reducing herbicides on crop production have been addressed over the years but results and interpretations often appear contradictory. In this paper, we critically analyze studies that have focused on the herbicide use, weeds and crop yield nexus. We identified many inconsistencies in the published results and demonstrate that these often stem from differences in the methodologies used and in the choice of the conceptual model that links the three items. Our main findings are: (1) although our review confirms that herbicide reduction increases weed infestation if not compensated by other cultural techniques, there are many shortcomings in the different methods used to assess the impact of weeds on crop production; (2) Reducing herbicide use rarely results in increased crop yield loss due to weeds if farmers compensate low herbicide use by other efficient cultural practices; (3) There is a need for comprehensive studies describing the effect of cropping systems on crop production that explicitly include weeds and disentangle the impact of herbicides from the effect of other practices on weeds and on crop production. We propose a framework that presents all the links and feed-backs that must be considered when analyzing the herbicide-weed-crop yield nexus. We then provide a number of methodological recommendations for future studies. We conclude that, since weeds are causing yield loss, reduced herbicide use and maintained crop productivity necessarily requires a redesign of cropping systems. These new systems should include both agronomic and biodiversity-based levers acting in concert to deliver sustainable weed management.


Sign in / Sign up

Export Citation Format

Share Document