scholarly journals Robotization and Welfare Trends in Future

2020 ◽  
Author(s):  
Belma Kencebay

There are concerns over the present and possible future impact of new advancements like robots and artificial intelligence on welfare. Experts from different fields including science and business have been concentrating on how new developments may affect the job market, and more broadly how new advancements will influence the society. It would be easy to get support for the use of robots for the tasks which are too difficult or too dangerous for humans. What is the capital owners’ focus at that point? What are the economic and social consequences of robotization? In this chapter, literature review including the recent thoughts on how developments in robotics may cause major changes in welfare distribution and revolutionary economic changes is presented.

2020 ◽  
Author(s):  
Avishek Choudhury

UNSTRUCTURED Objective: The potential benefits of artificial intelligence based decision support system (AI-DSS) from a theoretical perspective are well documented and perceived by researchers but there is a lack of evidence showing its influence on routine clinical practice and how its perceived by care providers. Since the effectiveness of AI systems depends on data quality, implementation, and interpretation. The purpose of this literature review is to analyze the effectiveness of AI-DSS in clinical setting and understand its influence on clinician’s decision making outcome. Materials and Methods: This review protocol follows the Preferred Reporting Items for Systematic Reviews and Meta- Analyses reporting guidelines. Literature will be identified using a multi-database search strategy developed in consultation with a librarian. The proposed screening process consists of a title and abstract scan, followed by a full-text review by two reviewers to determine the eligibility of articles. Studies outlining application of AI based decision support system in a clinical setting and its impact on clinician’s decision making, will be included. A tabular synthesis of the general study details will be provided, as well as a narrative synthesis of the extracted data, organised into themes. Studies solely reporting AI accuracy an but not implemented in a clinical setting to measure its influence on clinical decision making were excluded from further review. Results: We identified 8 eligible studies that implemented AI-DSS in a clinical setting to facilitate decisions concerning prostate cancer, post traumatic stress disorder, cardiac ailment, back pain, and others. Five (62.50%) out of 8 studies reported positive outcome of AI-DSS. Conclusion: The systematic review indicated that AI-enabled decision support systems, when implemented in a clinical setting and used by clinicians might not ensure enhanced decision making. However, there are very limited studies to confirm the claim that AI based decision support system can uplift clinicians decision making abilities.


Author(s):  
Mariek Vanden Abeele

Recent empirical work suggests that phubbing, a term used to describe the practice of snubbing someone with a phone during a face-to-face social interaction, harms the quality of social relationships. Based on a comprehensive literature review, this chapter presents a framework that integrates three concurrent mechanisms that explain the relational impact of phubbing: expectancy violations, ostracism, and attentional conflict. Based on this framework, theoretically grounded propositions are formulated that may serve as guidelines for future research on these mechanisms, the conditions under which they operate, and a number of potential issues that need to be considered to further validate and extend the framework.


2021 ◽  
Vol 11 (2) ◽  
pp. 870
Author(s):  
Galena Pisoni ◽  
Natalia Díaz-Rodríguez ◽  
Hannie Gijlers ◽  
Linda Tonolli

This paper reviews the literature concerning technology used for creating and delivering accessible museum and cultural heritage sites experiences. It highlights the importance of the delivery suited for everyone from different areas of expertise, namely interaction design, pedagogical and participatory design, and it presents how recent and future artificial intelligence (AI) developments can be used for this aim, i.e.,improving and widening online and in situ accessibility. From the literature review analysis, we articulate a conceptual framework that incorporates key elements that constitute museum and cultural heritage online experiences and how these elements are related to each other. Concrete opportunities for future directions empirical research for accessibility of cultural heritage contents are suggested and further discussed.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1317
Author(s):  
Maria Elena Laino ◽  
Angela Ammirabile ◽  
Alessandro Posa ◽  
Pierandrea Cancian ◽  
Sherif Shalaby ◽  
...  

Diagnostic imaging is regarded as fundamental in the clinical work-up of patients with a suspected or confirmed COVID-19 infection. Recent progress has been made in diagnostic imaging with the integration of artificial intelligence (AI) and machine learning (ML) algorisms leading to an increase in the accuracy of exam interpretation and to the extraction of prognostic information useful in the decision-making process. Considering the ever expanding imaging data generated amid this pandemic, COVID-19 has catalyzed the rapid expansion in the application of AI to combat disease. In this context, many recent studies have explored the role of AI in each of the presumed applications for COVID-19 infection chest imaging, suggesting that implementing AI applications for chest imaging can be a great asset for fast and precise disease screening, identification and characterization. However, various biases should be overcome in the development of further ML-based algorithms to give them sufficient robustness and reproducibility for their integration into clinical practice. As a result, in this literature review, we will focus on the application of AI in chest imaging, in particular, deep learning, radiomics and advanced imaging as quantitative CT.


Heliyon ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. e06626
Author(s):  
Paulina Cecula ◽  
Jiakun Yu ◽  
Fatema Mustansir Dawoodbhoy ◽  
Jack Delaney ◽  
Joseph Tan ◽  
...  

2019 ◽  
Vol 36 (4) ◽  
pp. 101392 ◽  
Author(s):  
Weslei Gomes de Sousa ◽  
Elis Regina Pereira de Melo ◽  
Paulo Henrique De Souza Bermejo ◽  
Rafael Araújo Sousa Farias ◽  
Adalmir Oliveira Gomes

2021 ◽  
Vol 24 ◽  
pp. S191
Author(s):  
A. Patel ◽  
C. Hallock ◽  
N. Fusco ◽  
S.M. Cadarette ◽  
L. Mody

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi139-vi139
Author(s):  
Jan Lost ◽  
Tej Verma ◽  
Niklas Tillmanns ◽  
W R Brim ◽  
Harry Subramanian ◽  
...  

Abstract PURPOSE Identifying molecular subtypes in gliomas has prognostic and therapeutic value, traditionally after invasive neurosurgical tumor resection or biopsy. Recent advances using artificial intelligence (AI) show promise in using pre-therapy imaging for predicting molecular subtype. We performed a systematic review of recent literature on AI methods used to predict molecular subtypes of gliomas. METHODS Literature review conforming to PRSIMA guidelines was performed for publications prior to February 2021 using 4 databases: Ovid Embase, Ovid MEDLINE, Cochrane trials (CENTRAL), and Web of Science core-collection. Keywords included: artificial intelligence, machine learning, deep learning, radiomics, magnetic resonance imaging, glioma, and glioblastoma. Non-machine learning and non-human studies were excluded. Screening was performed using Covidence software. Bias analysis was done using TRIPOD guidelines. RESULTS 11,727 abstracts were retrieved. After applying initial screening exclusion criteria, 1,135 full text reviews were performed, with 82 papers remaining for data extraction. 57% used retrospective single center hospital data, 31.6% used TCIA and BRATS, and 11.4% analyzed multicenter hospital data. An average of 146 patients (range 34-462 patients) were included. Algorithms predicting IDH status comprised 51.8% of studies, MGMT 18.1%, and 1p19q 6.0%. Machine learning methods were used in 71.4%, deep learning in 27.4%, and 1.2% directly compared both methods. The most common algorithm for machine learning were support vector machine (43.3%), and for deep learning convolutional neural network (68.4%). Mean prediction accuracy was 76.6%. CONCLUSION Machine learning is the predominant method for image-based prediction of glioma molecular subtypes. Major limitations include limited datasets (60.2% with under 150 patients) and thus limited generalizability of findings. We recommend using larger annotated datasets for AI network training and testing in order to create more robust AI algorithms, which will provide better prediction accuracy to real world clinical datasets and provide tools that can be translated to clinical practice.


Sign in / Sign up

Export Citation Format

Share Document