scholarly journals An IoT Based Cloud Deployment Framework for Effective Classification of Machine Conditions

2021 ◽  
Author(s):  
Ganga Dhandapani ◽  
V. Ramachandran

Cloud services are proposed for real-time data acquisition, data classification, data processing and decision making, which are highly interconnected services for effective condition monitoring of electrical machines. The proposed Software as a Service, Storage as a Service and Platform as a Service layers address the challenges of data storage and scalability while making analysis on the cluster of machines in an Industrial Environment. An experimental setup consisting of two DC motors coupled to AC Generator operating at different locations is considered to evolve the proposed model for effective integrated monitoring and decision making. This cloud-based vibration monitoring model provides services for data acquisition from the IoT devices mounted on the shafts of the DC motors, data storage to store the enormous amount of acquired signal data from multiple sensors, data classification of vibration signals for effective statistical analysis to estimate adaptive cluster of thresholds and appropriate decision-making services on demand over the Internet to utilize the reliable service of the machines in a persistent way. The computational engine will do inherent statistical analysis of the vibration signals to estimate the cluster of thresholds adaptive to various operating conditions. The services have been deployed without any limitation in a cloud environment and the industrial applications can share information using the deployed services from anywhere on demand basis. The deployed cloud service for the enhanced statistical classification algorithm eliminates the false identification of failures, which not only increase the availability of machines for intended operations but also reduce the maintenance cost. The resulting threshold values are compared with that of the vibration analysis carried out on the machine beds locally using myRIO for data acquisition in LabVIEW and the proposed model ensures the integrity in appropriate decision making with assured scalability.

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 213
Author(s):  
Anna Michalak ◽  
Jacek Wodecki ◽  
Michał Drozda ◽  
Agnieszka Wyłomańska ◽  
Radosław Zimroz

Diagnostics of industrial machinery is a topic related to the need for damage detection, but it also allows to understand the process itself. Proper knowledge about the operational process of the machine, as well as identification of the underlying components, is critical for its diagnostics. In this paper, we present a model of the signal, which describes vibrations of the sieving screen. This particular type is used in the mining industry for the classification of ore pieces in the material stream by size. The model describes the real vibration signal measured on the spring set being the suspension of this machine. This way, it is expected to help in better understanding how the overall motion of the machine can impact the efforts of diagnostics. The analysis of real vibration signals measured on the screen allowed to identify and parameterize the key signal components, which carry valuable information for the following stages of diagnostic process of that machine. In the proposed model we take into consideration deterministic components related to shaft rotation, stochastic Gaussian component related to external noise, stochastic α-stable component as a model of excitations caused by falling rocks pieces, and identified machine response to unitary excitations.


2000 ◽  
Vol 5 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Ronny Swain

The paper describes the development of the 1998 revision of the Psychological Society of Ireland's Code of Professional Ethics. The Code incorporates the European Meta-Code of Ethics and an ethical decision-making procedure borrowed from the Canadian Psychological Association. An example using the procedure is presented. To aid decision making, a classification of different kinds of stakeholder (i.e., interested party) affected by ethical decisions is offered. The author contends (1) that psychologists should assert the right, which is an important aspect of professional autonomy, to make discretionary judgments, (2) that to be justified in doing so they need to educate themselves in sound and deliberative judgment, and (3) that the process is facilitated by a code such as the Irish one, which emphasizes ethical awareness and decision making. The need for awareness and judgment is underlined by the variability in the ethical codes of different organizations and different European states: in such a context, codes should be used as broad yardsticks, rather than precise templates.


2020 ◽  
Vol 39 (3) ◽  
pp. 4041-4058
Author(s):  
Fang Liu ◽  
Xu Tan ◽  
Hui Yang ◽  
Hui Zhao

Intuitionistic fuzzy preference relations (IFPRs) have the natural ability to reflect the positive, the negative and the non-determinative judgements of decision makers. A decision making model is proposed by considering the inherent property of IFPRs in this study, where the main novelty comes with the introduction of the concept of additive approximate consistency. First, the consistency definitions of IFPRs are reviewed and the underlying ideas are analyzed. Second, by considering the allocation of the non-determinacy degree of decision makers’ opinions, the novel concept of approximate consistency for IFPRs is proposed. Then the additive approximate consistency of IFPRs is defined and the properties are studied. Third, the priorities of alternatives are derived from IFPRs with additive approximate consistency by considering the effects of the permutations of alternatives and the allocation of the non-determinacy degree. The rankings of alternatives based on real, interval and intuitionistic fuzzy weights are investigated, respectively. Finally, some comparisons are reported by carrying out numerical examples to show the novelty and advantage of the proposed model. It is found that the proposed model can offer various decision schemes due to the allocation of the non-determinacy degree of IFPRs.


J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 147-153
Author(s):  
Paula Morella ◽  
María Pilar Lambán ◽  
Jesús Antonio Royo ◽  
Juan Carlos Sánchez

Among the new trends in technology that have emerged through the Industry 4.0, Cyber Physical Systems (CPS) and Internet of Things (IoT) are crucial for the real-time data acquisition. This data acquisition, together with its transformation in valuable information, are indispensable for the development of real-time indicators. Moreover, real-time indicators provide companies with a competitive advantage over the competition since they enhance the calculus and speed up the decision-making and failure detection. Our research highlights the advantages of real-time data acquisition for supply chains, developing indicators that would be impossible to achieve with traditional systems, improving the accuracy of the existing ones and enhancing the real-time decision-making. Moreover, it brings out the importance of integrating technologies 4.0 in industry, in this case, CPS and IoT, and establishes the main points for a future research agenda of this topic.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2648
Author(s):  
Muhammad Aamir ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
Muhammad Zeeshan Azam ◽  
...  

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images. To tackle this problem, we propose a multilayered deep convolutional neural network. The proposed model works in two blocks: Block-I convolutional neural network (B-I CNN), for detection and occurrence of disasters, and Block-II convolutional neural network (B-II CNN), for classification of natural disaster intensity types with different filters and parameters. The model is tested on 4428 natural images and performance is calculated and expressed as different statistical values: sensitivity (SE), 97.54%; specificity (SP), 98.22%; accuracy rate (AR), 99.92%; precision (PRE), 97.79%; and F1-score (F1), 97.97%. The overall accuracy for the whole model is 99.92%, which is competitive and comparable with state-of-the-art algorithms.


2021 ◽  
Vol 13 (5) ◽  
pp. 2820
Author(s):  
Eglė Klumbytė ◽  
Raimondas Bliūdžius ◽  
Milena Medineckienė ◽  
Paris A. Fokaides

Measuring and monitoring sustainability plays an essential role in impact assessment of global changes and development. Multi-criteria decision-making (MCDM) represents a reliable and adequate technique for assessing sustainability, especially in the field of municipal buildings management, where numerous parameters and criteria are involved. This study presents an MCDM model for the sustainable decision-making, tailored to municipal residential buildings facilities management. The main outcome of this research concerned normalized and weighted decision-making matrixes, based on the complex proportion assessment (COPRAS) and weighted aggregated sum product assessment (WASPAS) methods, applied for ranking investment alternatives related to the management of the buildings. The delivered model was applied to 20 municipal buildings of Kaunas city municipality, located in Lithuania, which an EU member state employing practices and regulations in accordance with the EU acquis, as well as a former Soviet Republic. The proposed model aspires to enhance sustainability practices in the management of municipal buildings and to demonstrate a solid tool that will allow informed decision-making in the building management sector.


2021 ◽  
Vol 11 (9) ◽  
pp. 3974
Author(s):  
Laila Bashmal ◽  
Yakoub Bazi ◽  
Mohamad Mahmoud Al Rahhal ◽  
Haikel Alhichri ◽  
Naif Al Ajlan

In this paper, we present an approach for the multi-label classification of remote sensing images based on data-efficient transformers. During the training phase, we generated a second view for each image from the training set using data augmentation. Then, both the image and its augmented version were reshaped into a sequence of flattened patches and then fed to the transformer encoder. The latter extracts a compact feature representation from each image with the help of a self-attention mechanism, which can handle the global dependencies between different regions of the high-resolution aerial image. On the top of the encoder, we mounted two classifiers, a token and a distiller classifier. During training, we minimized a global loss consisting of two terms, each corresponding to one of the two classifiers. In the test phase, we considered the average of the two classifiers as the final class labels. Experiments on two datasets acquired over the cities of Trento and Civezzano with a ground resolution of two-centimeter demonstrated the effectiveness of the proposed model.


Author(s):  
Jianfang Cao ◽  
Minmin Yan ◽  
Yiming Jia ◽  
Xiaodong Tian ◽  
Zibang Zhang

AbstractIt is difficult to identify the historical period in which some ancient murals were created because of damage due to artificial and/or natural factors; similarities in content, style, and color among murals; low image resolution; and other reasons. This study proposed a transfer learning-fused Inception-v3 model for dynasty-based classification. First, the model adopted Inception-v3 with frozen fully connected and softmax layers for pretraining over ImageNet. Second, the model fused Inception-v3 with transfer learning for parameter readjustment over small datasets. Third, the corresponding bottleneck files of the mural images were generated, and the deep-level features of the images were extracted. Fourth, the cross-entropy loss function was employed to calculate the loss value at each step of the training, and an algorithm for the adaptive learning rate on the stochastic gradient descent was applied to unify the learning rate. Finally, the updated softmax classifier was utilized for the dynasty-based classification of the images. On the constructed small datasets, the accuracy rate, recall rate, and F1 value of the proposed model were 88.4%, 88.36%, and 88.32%, respectively, which exhibited noticeable increases compared with those of typical deep learning models and modified convolutional neural networks. Comparisons of the classification outcomes for the mural dataset with those for other painting datasets and natural image datasets showed that the proposed model achieved stable classification outcomes with a powerful generalization capacity. The training time of the proposed model was only 0.7 s, and overfitting seldom occurred.


2021 ◽  
pp. 1-21
Author(s):  
Sundas Shahzadi ◽  
Areen Rasool ◽  
Musavarah Sarwar ◽  
Muhammad Akram

Bipolarity plays a key role in different domains such as technology, social networking and biological sciences for illustrating real-world phenomenon using bipolar fuzzy models. In this article, novel concepts of bipolar fuzzy competition hypergraphs are introduced and discuss the application of the proposed model. The main contribution is to illustrate different methods for the construction of bipolar fuzzy competition hypergraphs and their variants. Authors study various new concepts including bipolar fuzzy row hypergraphs, bipolar fuzzy column hypergraphs, bipolar fuzzy k-competition hypergraphs, bipolar fuzzy neighborhood hypergraphs and strong hyperedges. Besides, we develop some relations between bipolar fuzzy k-competition hypergraphs and bipolar fuzzy neighborhood hypergraphs. Moreover, authors design an algorithm to compute the strength of competition among companies in business market. A comparative analysis of the proposed model is discuss with the existing models such bipolar fuzzy competition graphs and fuzzy competition hypergraphs.


Sign in / Sign up

Export Citation Format

Share Document