scholarly journals Epigenetic Regulation of Th2 Response in Asthma by Non-Coding RNAs

2021 ◽  
Author(s):  
Yanhua Niu ◽  
Chao Wang ◽  
Xiaoyan Dong ◽  
Nanbert Zhong

Asthma is a common chronic inflammatory disease. Pathogenic mechanism underlying asthma is complex. The inflammatory response of asthma includes lymphocytes (T, B cells), ILC2, eosinophils and other types of immune and inflammatory cells. T CD4+ T helper 2 cells (Th2 cells) are thought to play a central role in regulating the phenotype of allergic asthma. Asthma is often closely associated with Th1/Th2 cell imbalance. Non-coding RNAs (ncRNAs) are non-protein coding RNA molecules in the transcriptome, mainly including microRNAs (miRNAs), long non-coding RNAs and circRNAs, etc., which are widely found in eukaryotic transcriptome and participate in the regulation of a variety of biological processes. ncRNAs are considered to function as modulators of the immune system. Their biological changes represent an important mechanism for the development of immune-mediated diseases. This chapter mainly discusses the epigenetic regulation of Th2 cells and their cytokines in asthma by non-coding RNAs. It helps us to better understand the pathogenesis of asthma and find potential asthma biomarkers.

2018 ◽  
Vol 45 (3) ◽  
pp. 1191-1204 ◽  
Author(s):  
JingJing Wu ◽  
Swei Sunny Hann

Nasopharyngeal carcinoma (NPC) is one of the most common cancers originating in the nasopharynx and occurring at high frequency in South-eastern Asia and North Africa. Long non-coding RNAs (lncRNAs) are a class of non-protein-coding RNA molecules and key regulators of developmental, physiological, and pathological processes in humans. Emerging studies have shown that lncRNAs play critical roles in tumorgenicity and cancer prognosis. With the development of deep sequencing analyses, an extensive amount of functional lncRNAs have been discovered in nasopharyngeal carcinoma tissues and cell lines. However, the roles and mechanisms of aberrantly expressed lncRNAs in the pathogenesis of NPC are not fully understood. In this review, we briefly illustrate the concept, identification, functional characterization, and summarize recent advancements of biological functions of lncRNAs with heterogeneous mechanistic characterization and their involvement in NPC. Then, we describe individual lncRNAs that have been associated with tumorgenesis, growth, invasion, cancer stem cell differentiation, metastasis, drug resistance and discuss the strategies of their therapeutic manipulation in NPC. We also review the emerging insights into the role of lncRNAs and their potential as biomarkers and therapeutic targets for novel treatment paradigms. Finally, we highlight the up-to-date of clinical information involving lncRNAs and future directions in the linking lncRNAs to potential gene therapies, and how modifications of lncRNAs can be exploited for prevention and treatment of NPC.


2020 ◽  
Vol 21 (10) ◽  
pp. 3711
Author(s):  
Melina J. Sedano ◽  
Alana L. Harrison ◽  
Mina Zilaie ◽  
Chandrima Das ◽  
Ramesh Choudhari ◽  
...  

Genome-wide RNA sequencing has shown that only a small fraction of the human genome is transcribed into protein-coding mRNAs. While once thought to be “junk” DNA, recent findings indicate that the rest of the genome encodes many types of non-coding RNA molecules with a myriad of functions still being determined. Among the non-coding RNAs, long non-coding RNAs (lncRNA) and enhancer RNAs (eRNA) are found to be most copious. While their exact biological functions and mechanisms of action are currently unknown, technologies such as next-generation RNA sequencing (RNA-seq) and global nuclear run-on sequencing (GRO-seq) have begun deciphering their expression patterns and biological significance. In addition to their identification, it has been shown that the expression of long non-coding RNAs and enhancer RNAs can vary due to spatial, temporal, developmental, or hormonal variations. In this review, we explore newly reported information on estrogen-regulated eRNAs and lncRNAs and their associated biological functions to help outline their markedly prominent roles in estrogen-dependent signaling.


2020 ◽  
Vol 115 (5) ◽  
Author(s):  
Naisam Abbas ◽  
Filippo Perbellini ◽  
Thomas Thum

Abstract Soon after birth, the regenerative capacity of the mammalian heart is lost, cardiomyocytes withdraw from the cell cycle and demonstrate a minimal proliferation rate. Despite improved treatment and reperfusion strategies, the uncompensated cardiomyocyte loss during injury and disease results in cardiac remodeling and subsequent heart failure. The promising field of regenerative medicine aims to restore both the structure and function of damaged tissue through modulation of cellular processes and regulatory mechanisms involved in cardiac cell cycle arrest to boost cardiomyocyte proliferation. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are functional RNA molecules with no protein-coding function that have been reported to engage in cardiac regeneration and repair. In this review, we summarize the current understanding of both the biological functions and molecular mechanisms of ncRNAs involved in cardiomyocyte proliferation. Furthermore, we discuss their impact on the structure and contractile function of the heart in health and disease and their application for therapeutic interventions.


2021 ◽  
Author(s):  
Sandrine Lagarrigue ◽  
Matthias Lorthiois ◽  
Fabien Degalez ◽  
David Gilot ◽  
Thomas Derrien

AbstractAnimal genomes are pervasively transcribed into multiple RNA molecules, of which many will not be translated into proteins. One major component of this transcribed non-coding genome is the long non-coding RNAs (lncRNAs), which are defined as transcripts longer than 200 nucleotides with low coding-potential capabilities. Domestic animals constitute a unique resource for studying the genetic and epigenetic basis of phenotypic variations involving protein-coding and non-coding RNAs, such as lncRNAs. This review presents the current knowledge regarding transcriptome-based catalogues of lncRNAs in major domesticated animals (pets and livestock species), covering a broad phylogenetic scale (from dogs to chicken), and in comparison with human and mouse lncRNA catalogues. Furthermore, we describe different methods to extract known or discover novel lncRNAs and explore comparative genomics approaches to strengthen the annotation of lncRNAs. We then detail different strategies contributing to a better understanding of lncRNA functions, from genetic studies such as GWAS to molecular biology experiments and give some case examples in domestic animals. Finally, we discuss the limitations of current lncRNA annotations and suggest research directions to improve them and their functional characterisation.


2018 ◽  
Vol 215 (8) ◽  
pp. 2175-2195 ◽  
Author(s):  
Guilin Chen ◽  
Shengkai Zuo ◽  
Juan Tang ◽  
Caojian Zuo ◽  
Daile Jia ◽  
...  

Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive pulmonary artery (PA) remodeling. T helper 2 cell (Th2) immune response is involved in PA remodeling during PAH progression. Here, we found that CRTH2 (chemoattractant receptor homologous molecule expressed on Th2 cell) expression was up-regulated in circulating CD3+CD4+ T cells in patients with idiopathic PAH and in rodent PAH models. CRTH2 disruption dramatically ameliorated PA remodeling and pulmonary hypertension in different PAH mouse models. CRTH2 deficiency suppressed Th2 activation, including IL-4 and IL-13 secretion. Both CRTH2+/+ bone marrow reconstitution and CRTH2+/+ CD4+ T cell adoptive transfer deteriorated hypoxia + ovalbumin–induced PAH in CRTH2−/− mice, which was reversed by dual neutralization of IL-4 and IL-13. CRTH2 inhibition alleviated established PAH in mice by repressing Th2 activity. In culture, CRTH2 activation in Th2 cells promoted pulmonary arterial smooth muscle cell proliferation through activation of STAT6. These results demonstrate the critical role of CRTH2-mediated Th2 response in PAH pathogenesis and highlight the CRTH2 receptor as a potential therapeutic target for PAH.


2020 ◽  
Vol 6 (3) ◽  
pp. 35
Author(s):  
Deepak Balamurali ◽  
Monika Stoll

Cardiovascular diseases (CVDs) are of multifactorial origin and can be attributed to several genetic and environmental components. CVDs are the leading cause of mortality worldwide and they primarily damage the heart and the vascular system. Non-coding RNA (ncRNA) refers to functional RNA molecules, which have been transcribed into DNA but do not further get translated into proteins. Recent transcriptomic studies have identified the presence of thousands of ncRNA molecules across species. In humans, less than 2% of the total genome represents the protein-coding genes. While the role of many ncRNAs is yet to be ascertained, some long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been associated with disease progression, serving as useful diagnostic and prognostic biomarkers. A plethora of data repositories specialized in ncRNAs have been developed over the years using publicly available high-throughput data from next-generation sequencing and other approaches, that cover various facets of ncRNA research like basic and functional annotation, expressional profile, structural and molecular changes, and interaction with other biomolecules. Here, we provide a compendium of the current ncRNA databases relevant to cardiovascular research.


Genome ◽  
2016 ◽  
Vol 59 (4) ◽  
pp. 263-275 ◽  
Author(s):  
Mohammad Reza Bakhtiarizadeh ◽  
Batool Hosseinpour ◽  
Babak Arefnezhad ◽  
Narges Shamabadi ◽  
Seyed Alireza Salami

Long non-coding RNAs (lncRNAs) are transcribed RNA molecules >200 nucleotides in length that do not encode proteins and serve as key regulators of diverse biological processes. Recently, thousands of long intergenic non-coding RNAs (lincRNAs), a type of lncRNAs, have been identified in mammalians using massive parallel large sequencing technologies. The availability of the genome sequence of sheep (Ovis aries) has allowed us genomic prediction of non-coding RNAs. This is the first study to identify lincRNAs using RNA-seq data of eight different tissues of sheep, including brain, heart, kidney, liver, lung, ovary, skin, and white adipose. A computational pipeline was employed to characterize 325 putative lincRNAs with high confidence from eight important tissues of sheep using different criteria such as GC content, exon number, gene length, co-expression analysis, stability, and tissue-specific scores. Sixty-four putative lincRNAs displayed tissues-specific expression. The highest number of tissues-specific lincRNAs was found in skin and brain. All novel lincRNAs that aligned to the human and mouse lincRNAs had conserved synteny. These closest protein-coding genes were enriched in 11 significant GO terms such as limb development, appendage development, striated muscle tissue development, and multicellular organismal development. The findings reported here have important implications for the study of sheep genome.


2016 ◽  
Vol 2 (1) ◽  
pp. 5
Author(s):  
Yu Cuiyun ◽  
Qian Ning ◽  
Zhi-Ping Li ◽  
Wen Huang ◽  
Jia Yu ◽  
...  

<p align="left">Non-coding RNAs (ncRNA) are RNA molecules without protein coding functions owing to the lack of an open reading frame (ORF). Based on the length, ncRNAs can be divided into long and short ncRNAs; short ncRNAs include miRNAs and piRNAs. Hepatocellular carcinoma (HCC) is among the most frequent forms of cancer worldwide and its incidence is increasing rapidly. Studies have found that ncRNAs are likely to play a crucial role in a variety of biological processes including the pathogenesis and progression of HCC. In this review, we summarized the regulation mechanism and biological functions of ncRNAs in HCC with respect to its application in HCC diagnosis, therapy and prognosis.</p>


Author(s):  
Olga Wawrzyniak ◽  
Żaneta Zarębska ◽  
Katarzyna Rolle ◽  
Anna Gotz-Więckowska

Long non-coding RNAs are >200-nucleotide-long RNA molecules which lack or have limited protein-coding potential. They can regulate protein formation through several different mechanisms. Similarly, circular RNAs are reported to play a critical role in post-transcriptional gene regulation. Changes in the expression pattern of these molecules are known to underlie various diseases, including cancer, cardiovascular, neurological and immunological disorders (Rinn & Chang, 2012; Sun & Kraus, 2015). Recent studies suggest that they are differentially expressed both in healthy ocular tissues as well as in eye pathologies, such as neovascularization, proliferative vitreoretinopathy, glaucoma, cataract, ocular malignancy or even strabismus (Li et al., 2016). Aetiology of ocular diseases is multifactorial and combines genetic and environmental factors, including epigenetic and non-coding RNAs. In addition, disorders like diabetic retinopathy or age-related macular degeneration lack biomarkers for early detection as well as effective treatment methods that would allow controlling the disease progression at its early stages. The newly discovered non-coding RNAs seem to be the ideal candidates for novel molecular markers and therapeutic strategies. In this review, we summarized the current knowledge about gene expression regulators – long non-coding and circular RNA molecules in eye diseases.


2020 ◽  
Author(s):  
Silke Jensen ◽  
Emilie Brasset ◽  
Elise Parey ◽  
Hugues Roest-Crollius ◽  
Igor V. Sharakhov ◽  
...  

ABSTRACTPIWI-interacting RNAs (piRNAs) target transcripts by sequence complementarity serving as guides for RNA slicing in animal germ cells. The piRNA pathway is increasingly recognized as critical for essential cellular functions such as germline development and reproduction. In the Anopheles gambiae ovary, as much as 11% of piRNAs map to protein-coding genes. Here we show that ovarian mRNAs and long non-coding RNAs (lncRNAs) are processed into piRNAs that can direct other transcripts into the piRNA biogenesis pathway. Targeting piRNAs fuel transcripts either into the ping-pong cycle of piRNA amplification or into the machinery of phased piRNA biogenesis, thereby creating networks of inter-regulating transcripts. RNAs of the same network share related genomic repeats. These repeats give rise to piRNAs, which target other transcripts and lead to a cascade of concerted RNA slicing. While ping-pong networks are based on repeats of several hundred nucleotides, networks that rely on phased piRNA biogenesis operate through short ∼40-nucleotides long repeats, which we named snetDNAs. Interestingly, snetDNAs are recurring in evolution from insects to mammals. Our study brings to light a new type of a conserved regulatory pathway, the snetDNA-pathway, by which short sequences can include independent genes and lncRNAs in the same biological pathway.AUTHOR SUMMARYSmall RNA molecules are essential actors in silencing mobile genetic elements in animal germ cells. The 24-29-nucleotide-long Piwi-interacting RNAs (piRNAs) target transcripts by sequence complementarity serving as guides for RNA slicing. Mosquitoes of the Anopheles gambiae species complex are the principal vectors of malaria, and research on their germline is essential to develop new strategies of vector control by acting on reproduction. In the Anopheles gambiae ovary as much as 11% of piRNAs originate from protein-coding genes. We identified piRNAs which are able to target transcripts from several distinct genes or long non-coding RNAs (lncRNAs), bringing together genic transcripts and lncRNAs in a same regulation network. piRNA targeting induces transcript slicing and production of novel piRNAs, which then target other mRNAs and lncRNAs leading again to piRNA processing, thus resulting in a cascade of RNA slicing and piRNA production. Each network relies on piRNAs originating from repeated genetic elements, present in all transcripts of the same network. Some of these repeats are very short, only ∼40-nucleotides long. We identified similar repeats in all 43 animal species that we analysed, including mosquitoes, flies, arachnidae, snail, mouse, rat and human, suggesting that such regulation networks are recurrent, possibly conserved, in evolutionary history.


Sign in / Sign up

Export Citation Format

Share Document