scholarly journals Health Hazards of Toxic and Essential Heavy Metals from the Poultry Waste on Human and Aquatic Organisms

2021 ◽  
Author(s):  
Adesakin Taiwo Adekanmi

This research was conducted to examine the impact of some essential heavy metals used as a supplement during animal feed formulation and the toxic from unregulated discharges of untreated poultry waste into water bodies on man and aquatic organisms. During the processing of poultry feed, certain heavy metals are used as a supplement such as selenium, copper, zinc, iron etc. to enhance poultry meat and egg yield which is also increase the daily discharge of anthropogenic wastes into our environment that contain high concentration of heavy metals discharges into aquatic environment globally, especially in underdeveloped where this waste are not treated before discharge or used in agriculture as an organic fertilizer in planting crops as a result of this it become absorb by plants and could pose a serious health risk to man and aquatic species as well as affect the ecological balance that can be transfer to humans via the food chain. Some organisms are kills as a result of the toxic heavy metals in water and can affect their growths. Bio-accumulated in the body of certain species, such as fish, which are eaten by humans that causes devastating diseases such as Minamata and Itai-Itai. Regulation of the use some heavy metals as a supplement in feed production or complete removal of it in animal feed should be adopt in order to minimize the human health risks and environmental contamination associated with these animal waste.

2017 ◽  
Vol 1 ◽  
pp. 264
Author(s):  
Md Didarul Islam ◽  
Ashiqur Rahaman ◽  
Fahmida Jannat

This study was based on to determine the concentration of macro and micro nutrients as well as toxic and nontoxic heavy metals present in the chicken feed available in Dhaka city of Bangladesh. All macro nutrients, if present in the feed at high concentration have some adverse effect, at the same time if this nutrient present in the feed at low concentration this have some adverse effect too. So that this nutrient level should be maintained at a marginal level. On the other side toxic heavy metals if present in the feed at very low concentration those can contaminate the total environment of the ecosystem. In this study six brand samples (starter, grower, finisher and layer) which was collected from different renowned chicken feed formulation industry in Bangladesh. Those samples were prepared for analysis by wet ashing and then metals were determined by Atomic Absorption Spectroscopy. It was found that 27.7 to 68.4, 57.3 to 121.9, 0.21 to 4.1, 0.32 to 2.1, 0.11 to 1.58, 0.28 to 2.11 and 0.28 to 1.78 for zinc, iron, copper, mercury, cadmium, nickel and cobalt respectively. It was found that essential macro and micro nutrients were present in the feed in low concentration on the other side mercury was present in high concentration in the feed samples.


1970 ◽  
Vol 1 ◽  
pp. 264
Author(s):  
Md Didarul Islam ◽  
Ashiqur Rahaman, Fahmida Jannat

This study was based on to determine the concentration of macro and micro nutrients as well as toxic and nontoxic heavy metals present in the chicken feed available in Dhaka city of Bangladesh. All macro nutrients, if present in the feed at high concentration have some adverse effect, at the same time if this nutrient present in the feed at low concentration this have some adverse effect too. So that this nutrient level should be maintained at a marginal level. On the other side toxic heavy metals if present in the feed at very low concentration those can contaminate the total environment of the ecosystem. In this study six brand samples (starter, grower, finisher and layer) which was collected from different renowned chicken feed formulation industry in Bangladesh. Those samples were prepared for analysis by wet-ashing and then metals were determined by Atomic Absorption Spectroscopy. It was found that 27.7 to 68.4, 57.3 to 121.9, 0.21 to 4.1, 0.32 to 2.1, 0.11 to 1.58, 0.28 to 2.11 and 0.28 to 1.78 for zinc, iron, copper, mercury, cadmium, nickel and cobalt respectively. It was found that essential macro and micro nutrients were present in the feed in low concentration on the other side mercury was present in high concentration in the feed samples


Author(s):  
MdDidarul Islam, Ashiqur Rahaman, Aboni Afrose

This study was based on determining concentration of essential and toxic heavy metal in coconut water available at a local Hazaribagh area in Dhaka, Bangladesh. All essential minerals, if present in the drinking water at high concentration or very low concentration, it has negative actions. In this study, fifteen samples and eight heavy metals were analyzed by Atomic Absorption Spectroscopy (AAS) method which was followed by wet ashing digestion method. The concentration obtained in mg/l were in the range of 0.3 to 1.5, 7.77 to 21.2, 0 to 0.71, 0 to 0.9, 0 to 0.2, 0.9 to 17.3, 0.1 to 0.9, 0 to 0.9 and 0 to 0.7 for Fe, Ni, Cu, Cd, Cr, Zn, Pb and Se respectively. From this data it was concluded that any toxic heavy metals like Cd, Cr, Pb and Ni exceed their toxicity level and some essential nutrients were in low concentration in those samples. 


2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Hoshyar Saadi Ali ◽  
Dhary Alewy Almashhadany ◽  
Hawraz Sami Khalid

Heavy metal contamination of poultry meat is a critical issue for human health due to associated risks of cytotoxicity and systemic pathologies after ingestion of such metals. A total of twenty chicken liver samples were collected from markets of Erbil city and analyzed for ten heavy metals contents by Inductively Coupled Plasma Optical Emission Spectrometry. The targeted metals were cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), mercury (Hg), zinc (Zn) and selenium (Se). The average concentrations (mg/kg) of targeted trace elements were 0.06±0.027, 0.06±0.05, 2.05±0.34, 1.85±0.47, 0.15±0.17, and 33.53±5.24 for Co, Cr, Cu, Mn, Ni, and Zn respectively. Copper (Cu) levels significantly exceeded the maximum permissible limit of WHO. Moreover, the average concentrations of toxic heavy metals and selenium were 0.07±0.037, 0.278±0.10, 0.11±0.083, and 2.01±0.454 mg/kg for Cd, Pb, Hg, and Se respectively. Hg and Pb levels exceeded the permissible limits of WHO. Higher levels of Cu and Hg in poultry may pose a serious threat to consumers which demand countermeasures and precautions to be taken. Iraqi Standards Authority and relevant official institutions are strongly recommended to regulate safe disposal of heavy metal waste in the environment to reduce animal exposure to such metals.


2020 ◽  
Author(s):  
Mohammad Ahmad Wahsha ◽  
Tariq Al-Najjar

<p>Heavy metals are considered to be among the most potent environmental contaminants, and their release into the environment is increasing rapidly since the last decades from various sources and activities and may enter into the environment by a wide range of pathways and processes. They can be translocated, disperse in the environment, and bio-concentrate in aquatic organisms, causing increase ecosystem degradation and leading to biodiversity loss. Furthermore, they may enter the food chain, creating health risks for both humans and animals. This study aimed to evaluate the ecotoxicological effects of anthropogenic pressure in semi-enclosed artificial lagoon ecosystems in the Gulf of Aqaba, Red Sea. Our findings with regard to heavy metal contamination showed that the area is contaminated by significant amounts of several potentially toxic heavy metals (such as Cd, Cr, Cu, and Fe). The anthropic intervention in the area impacted heavily the natural environment. We found that the biological test (lipid peroxidation) was a useful assay for assessing the overall health condition and response (stress level) towards natural and anthropogenic forces in the studied areas. The selected marine organisms (<em>Holothuria atra</em>, <em>Tripneustes gratilla</em>, <em>Ulva lactuca </em>and <em>Halophila stipulacea</em>) have the ability to accumulate several levels of heavy metals in their tissue with different trends of bioaccumulation. Therefore, they can be used as promising bioindicators for such research. The results obtained permit to assess the environmental effects of anthropogenic pressure and can be a useful basis for planning possible remediation projects.</p>


A study was conducted to assess the impact of industrial discharge on the quality of sediment obtained from River Akinbo around Lafarge Cement WAPCO, Ewekoro. Four locations were chosen along the water course (River Akinbo) to reflect a consideration of all industrial activities that are capable of changing the quality of sediments. Sediment samples were collected in three monthsbetween (October 2015 - June 2016) at the four sampling points. The physicochemical parameters determined were sediment pH, moisture content, sulphate (mg/l), nitrate (mg/l), phosphate (mg/l) and chloride (mg/L) using standard methods. Sequential Extraction Procedure (SEP) was used to determine the concentration of heavy metals to include (Pb, Cr, Cd, Mn, Ni, Fe) while XRF was used to determine the geo-chemical index of the sediment. Sediment pH is between slightly alkaline, the bioavailability of the metal followed a trend Ni > Cr >Mn> Cd>Pb> Fe with a little interchange at some sampling point. Percentage by weight trend for the XRF were in the order of major metals Al > Fe >Ca> K > Na and in the order of minor metals Mn> Cr > Zn. The concentration of cadmium, chromium and iron were above the permissible limit WHO and FEPA. The high concentration of heavy metals in sediment is most likely as a result of the amount of effluents (dust and waste water) discharged into the river from the factory. To prevent mass extinction of aquatic organisms due to anoxic conditions, proper regulations should be implemented to reduce the organic load the river receives.


2021 ◽  
Author(s):  
Maria Michal ◽  
Anu Maria ◽  
Krishnakumar Velayudhannair ◽  
Xavier Vincent ◽  
Divya K. Radhakrishnan

Abstract Smoked cigarette and butts are the most common forms of litter globally. The local water bodies and their compartments have been severely polluted by the accumulation of these litters and the cumulative effect of many cigarette butts littered in a centralised area may present a significant threat to the living organisms. It is essential to study the leaching behaviour of cigarettes to understand how the heavy metals are leached out into the aquatic ecosystem. In this context, we determined the concentration of different metals (such as Cd, Cu, Fe, Pb, Sn, Zn & Hg) leached from the different brands of unsmoked and smoked cigarette and cigarette butts by using Atomic Absorption Spectrometry. The results revealed that the amounts of heavy metal are higher in butt samples (USB and SB) of both cigarette and leachate irrespective of brands, compared to the tobacco part of the cigarette and the concentrations of certain toxic heavy metals in cigarettes were significantly different between cigarette brands tested. These results suggest that cigarette litter was found to be one of the major sources of metal contamination in the aquatic ecosystem and apparent leaching may increase the risk of toxicity to aquatic organisms.


2021 ◽  
Vol 298 ◽  
pp. 05004
Author(s):  
Sara El Ghizi ◽  
Sliman Hssaissoune ◽  
Mohammed El Bouch ◽  
Mohamed Sadik ◽  
Mustapha Hasnaoui

The contamination of aquatic ecosystems with metals remains a serious environmental problem of growing concern. Sediments are often studied as reservoirs or wells for many chemical pollutants. They are micropollutant traps; they also indicate the watercourse's historical pollution, lagoons, and lakes…Lake Dayet Er-Roumi (SIBE) is the only permanent natural lake in the Khemisset region (Morocco); this wetland is affected by several forms of pollution that are mainly linked to human activities (agricultural, domestic, industrial, etc.). The objective of our study is to contribute, through qualitative and quantitative analysis, to the assessment of lake sediment pollution by Spatio-temporal monitoring of certain toxic heavy metals such as Mn, Zn, Cr, Cd. These sediments are collected on the level of the lake's surface; the concentration of heavy metals was measured by microwave plasma atomic emission spectroscope (MP-AES). Metal analyses carried out at three measuring points during the winter season reveal a high concentration of Zn, Cr, and Mn at all stations during the winter season, which far exceeds the recommended standards, with a low level of Cd. The contamination factor "FC" and the degree of contamination "DC" reveal polymetallic contaminations dominated by two elements, zinc, and Chromium, which are the most worrying. These results clearly show that lake Dayet Er-Roumi is polluted; strategies to limit the lake's pollution must be implemented to avoid several ecological problems (fish mortality, etc.).


High concentration of heavy metal content of fruits and vegetables may reduce their antioxidant properties. Therefore, the concentration of selected heavy metals such as Cr, Ni, Mn, Fe, Mg, Cu and Pb in vegetables (Colocasia esculanta and Abelmoschus esculentus) and fruits (Psidium guajava and Pyrus) was assessed using atomic absorption spectrophotometer. The highest concentrations of heavy metals in vegetables and fruits were found 0.019, 0.008, 0.072, 0.241, 1.754, 0.107 and 0.014 mg/g for Cr, Ni, Mn, Fe, Mg, Cu and Pb, respectively. Level of Cr was found higher in Colocasia esculanta (0.011 mg/g). The highest level of Ni was found in Pyrus (0.008mg/g) while lowest in the Soil of Abelmoschus esculentus (0.003 mg/g). The highest level of Mn was observed in Soil of Colocasia esculanta (0.072 mg/g) while lowest in Abelmoschus esculentus (0.007 mg/g). Maximum level of Mg was found in Soil of Psidium guajava while minimum in Colocasia esculant. Abelmoschus esculentus showed highest level of Cu while minimum level was found in Colocasia esculanta. Pb showed maximum amount in Psidium guajava and minimum in soil of Abelmoschus esculentus. The values of Cr, Ni, Mn, Fe, Mg, Cu and Pb in all samples are in the safe limit. However the study indicates that the vegetables, fruits and soil samples are contaminated by toxic heavy metals.


2004 ◽  
Vol 1 (2) ◽  
pp. 116 ◽  
Author(s):  
Ian W. Oliver ◽  
Graham Merrington ◽  
Mike J. McLaughlin

Environmental Context. Land application of sewage-derived biosolids is both an inexpensive method to dispose of waste and a simple way to increase soil fertility and stability. However, biosolids often contain high concentrations of heavy metals, but not all of the metals are immediately available for uptake by the soil or other organisms. To determine if this toxicologic risk outweighs the benefits, the degree of ecologically available metal, rather than simply the entire metal content, must be known in both the as-disposed and worst conditions scenarios. Application of these principles requires regulatory bodies to amend their guidelines. Abstract. Application of biosolids to agricultural land provides a low-cost disposal option with many potential benefits to soil. However, the practice may result in accumulations of potentially toxic heavy metals, and thus regulations are in place to limit the amount of metals applied to soil in this way. Current Australian regulations are not ideal because they are based on total metal concentrations in soils and biosolids, rather than the fraction that is ecologically available (the fraction accessible by organisms). Therefore more environmentally appropriate regulations, based on the available metal portion, need to be devised. However, before this is possible, more needs to be known about the characteristics of Australian biosolids, including the factors that influence the availability of biosolid metals. Copper is a metal of great concern because of its commonly high concentration in biosolids and because of its relatively high toxicity to certain groups of bacteria and fungi. Therefore an investigation was conducted to characterize the range of properties observed in Australian biosolids, and to determine the fraction of available metals and the factors that influence it (particularly in the case of copper). General properties such as pH, electrical conductivity, organic carbon, and total metal concentrations were measured. Availability of copper was specifically measured using isotopic exchange techniques and a Cu2+ ion-selective electrode. Results showed that total copper concentration and Cu2+ activity could be used to predict available copper. A new system of biosolid land-use regulation that incorporates the available metal fraction and a pH protection factor is proposed.


Sign in / Sign up

Export Citation Format

Share Document