scholarly journals Particle and Cell Separation

2021 ◽  
Author(s):  
J. Paul Robinson

Many processors are available for separating particles and/or cells, but few can match the capacity of flow cytometry – in particular the sorting component. Several aspects unique to cell sorting give it such power. First, particles can be separated based on size, complexity, fluorescence, or any combination of these parameters. Second, it is entirely possible to separate particles under sterile conditions, making this technology very advantageous for selecting cells for culture. Third, when this sterile environment is combined with a highly controlled safety system, it is possible to safely sort and separate highly pathogenic organisms or even cells containing such pathogens. The very latest instruments available add even more power by introducing the ability to sort cells based on spectral unmixing. This last option requires incredible computer power and very-high-speed processing, since the sort decision is based on computational algorithms derived from the spectral mixture being analyzed.

Author(s):  
Bruce S. Edwards ◽  
Larry A. Sklar

The flow cytometer is unique among biomedical analysis instruments in its ability to make multiple correlated optical measurements on individual cells or particles at high rates. Moreover, an ever-expanding arsenal of fluorescent probes enables the modern flow cytometer to quantify a large and growing diversity of cell-associated macromolecules and physiological processes. Modern flow cytometers have achieved such a level of sophistication and reliability that unattended operation by automated systems is a practical reality. From its inception, flow cytometry has been in the vanguard of automation in cytological analysis. One of the most powerful automated features is cell sorting, an operation in which highly purified subsets of cells or particles are isolated from heterogeneous source populations on the basis of a targeted, multiparameter phenotype. The method most widely used for sorting today, which is based on electrostatic deflection of charged droplets, was developed over 30 years ago and led to commercial flow cytometers that were capable of sorting cells at rates of hundreds of cells per second. Influenced by the need of the Human Genome Project for efficient isolation of purified chromosomes, a high-speed chromosome flow sorter was developed and patented in 1982 that increased sort rates to tens of thousands of events per second (13). Commercial systems subsequently became available in the 1990s that permitted sorting of cells at such high rates (www.bdbiosciences.com; www.dakocytomation. com). Thus, since the initial development of the technology, the throughput of automated cell sorting has increased by nearly two orders of magnitude. In single cell analysis and sorting, throughput is determined by the rate at which the flow cytometer can process individual cells as they pass single file through the point of detection. Another aspect of flow cytometer throughput concerns the rate at which the flow cytometer can sequentially process multiple discreet collections of cells. This component of throughput will be important, for example, in the screening of collections of test compounds for their effects on bulk populations of cells. This is of particular relevance for modern drug discovery, in which there is a need to test cellular targets against millions of potentially valuable compounds that may bind cellular receptors to effect clinically therapeutic cellular responses.


2008 ◽  
Author(s):  
Meggie Grafton ◽  
Lisa M. Reece ◽  
Pedro P. Irazoqui ◽  
Byunghoo Jung ◽  
Huw D. Summers ◽  
...  

Author(s):  
C. O. Jung ◽  
S. J. Krause ◽  
S.R. Wilson

Silicon-on-insulator (SOI) structures have excellent potential for future use in radiation hardened and high speed integrated circuits. For device fabrication in SOI material a high quality superficial Si layer above a buried oxide layer is required. Recently, Celler et al. reported that post-implantation annealing of oxygen implanted SOI at very high temperatures would eliminate virtually all defects and precipiates in the superficial Si layer. In this work we are reporting on the effect of three different post implantation annealing cycles on the structure of oxygen implanted SOI samples which were implanted under the same conditions.


Alloy Digest ◽  
2019 ◽  
Vol 68 (10) ◽  

Abstract YSS HAP72 is a powder metallurgy high-speed tool steel with a very high wear resistance. This datasheet provides information on composition, hardness, and bend strength. It also includes information on high temperature performance. Filing Code: TS-779. Producer or source: Hitachi Metals America Ltd.


Sign in / Sign up

Export Citation Format

Share Document