scholarly journals The Effect of Implant Surface Design and Their Decontamination Methods in Peri-Implantitis Treatment

2021 ◽  
Author(s):  
Dragana Rakašević ◽  
Dragana Gabrić

Different titanium implant surfaces are prone to microbial colonization and dental plaque accumulation contributing to peri-implantitis pathogens adherence and growth. In conjunction with systemic, local, and implant-based factors such as micro- and macro-designs, implant location, and region, these pathogens can cause a complex inflammatory response resulting in peri-implantitis and deleterious bone loss. Implant surface decontamination plays a crucial and important step in peri-implantitis therapy. The primary goal of implant surface decontamination is to eradicate bacteria and their products outside of implant pits and grooves reducing inflammation and promoting tissue regeneration and/or reparation. Various implant surface decontamination methods such as mechanical, chemical or physical methods have been proposed to prevent bacterial resistance development or/and surface damage. The chapter aimed to assess if implant microdesign could influence the decontamination method choice.

Author(s):  
Pier Poli ◽  
Francisley Avila Souza ◽  
Mattia Manfredini ◽  
Carlo Maiorana ◽  
Mario Beretta

Not required for Clinical case letters according to the authors' guidelines.


Author(s):  
T. R. Davydova ◽  
А. I. Shaikhaliev ◽  
D. A. Usatov ◽  
G. A. Gasanov ◽  
R. S. Korgoloev

The aim of this study was to study the effect of surface branching of titanium endoprostheses on the efficiency of fibrointegration. The object of the study was samples of titanium alloy Ti6Al4V in the form of disks with a diameter of 5 mm and a thickness of 1 mm with various surface treatments: 1) samples with a rough surface after sandblasting; 2) samples with a rough surface after sandblasting with a bioactive coating of titanium dioxide TiO2 with anatase structure. The study of surface roughness was carried out by profilometry. Evaluation of the spreading and proliferation of cells on the surface of test samples, as well as evaluation of the effectiveness of fibrointegration was carried out according to standard methods using scanning electron microscopy. During the experiments, mesinchymal stem cells were sown on test samples and the test samples were introduced into the soft tissues of experimental animals. Based on the results obtained, it was concluded that the technology of forming rough surfaces by sandblasting does not provide high uniformity and reproducibility in the nanometer range and, apparently, another method for obtaining a rough surface should be chosen. The application of a bioactive coating of titanium dioxide TiO2 with the anatase structure to the surface of titanium endoprostheses increases the efficiency of fibrointegration, however, primarily the fibrointegration of titanium endoprostheses depends on their surface roughness, which determines the concentration of cell structures, the intensity of their adhesion and the ability to fibrointegrative process.


2021 ◽  
Vol 10 (8) ◽  
pp. 1641
Author(s):  
Stefanie Kligman ◽  
Zhi Ren ◽  
Chun-Hsi Chung ◽  
Michael Angelo Perillo ◽  
Yu-Cheng Chang ◽  
...  

Implant surface design has evolved to meet oral rehabilitation challenges in both healthy and compromised bone. For example, to conquer the most common dental implant-related complications, peri-implantitis, and subsequent implant loss, implant surfaces have been modified to introduce desired properties to a dental implant and thus increase the implant success rate and expand their indications. Until now, a diversity of implant surface modifications, including different physical, chemical, and biological techniques, have been applied to a broad range of materials, such as titanium, zirconia, and polyether ether ketone, to achieve these goals. Ideal modifications enhance the interaction between the implant’s surface and its surrounding bone which will facilitate osseointegration while minimizing the bacterial colonization to reduce the risk of biofilm formation. This review article aims to comprehensively discuss currently available implant surface modifications commonly used in implantology in terms of their impact on osseointegration and biofilm formation, which is critical for clinicians to choose the most suitable materials to improve the success and survival of implantation.


Author(s):  
Wang Lai Hui ◽  
Vittoria Perrotti ◽  
Adriano Piattelli ◽  
Kostya (Ken) Ostrikov ◽  
Zhi Fang ◽  
...  

Abstract Objective Treatment of implants with peri-implantitis is often unsuccessful due to residual microbial biofilm hindering re-osseointegration. The aim of this study was to treat biofilm-grown titanium (Ti) implants with different modalities involving air abrasion (AA) and cold atmospheric plasma (CAP) to compare the effectiveness in surface decontamination and the alteration/preservation of surface topography. Materials and methods Saliva collected from a peri-implantitis patient was used to in vitro develop human biofilm over 35 implants with moderately rough surface. The implants were then mounted onto standardized acrylic blocks simulating peri-implantitis defects and treated with AA (erythritol powder), CAP in a liquid medium, or a combination (COM) of both modalities. The remaining biofilm was measured by crystal violet (CV). Surface features and roughness before and after treatment were assessed by scanning electron microscope (SEM). The data were statistically analyzed using Kruskal-Wallis followed by Tukey’s multiple comparison test. Results In the present peri-implantitis model, the human complex biofilm growth was successful as indicated by the statistical significance between the negative and positive controls. All the treatment groups resulted in a remarkable implant surface decontamination, with values very close to the negative control for AA and COM. Indeed, statistically significant differences in the comparison between the positive control vs. all the treatment groups were found. SEM analysis showed no post-treatment alterations on the implant surface in all the groups. Conclusions Decontamination with AA delivering erythritol with or without CAP in liquid medium demonstrated compelling efficacy in the removal of biofilm from implants. All the tested treatments did not cause qualitative alterations to the Ti surface features. No specific effects of the CAP were observed, although further studies are necessary to assess its potential as monotherapy with different settings or in combination with other decontamination procedures. Clinical relevance CAP is a promising option in the treatment of peri-implantitis because it has potential to improve the elimination of bacterial plaque from implant surfaces, in inaccessible pockets or during open-flap debridement, and should stimulate the process of the re-osseointegration of affected dental implants by not altering surface features and roughness.


2007 ◽  
Vol 361-363 ◽  
pp. 749-752
Author(s):  
J. Strnad ◽  
Jan Macháček ◽  
Z. Strnad ◽  
C. Povýšil ◽  
Marie Strnadová

This study was carried out to assess the bone response to alkali-modified titanium implant surface (Bio surface), using histomorphometric investigation on an animal model. The mean net contribution of the Bio surface to the increase in bone implant contact (BIC) with reference to the turned, machined surface was evaluated at 7.94 % (BIC/week), within the first five weeks of healing. The contribution was expressed as the difference in the osseointegration rates ( BIC/'healing time) between the implants with alkali modified surface (Bio surface) and those with turned, machined surface. The surface characteristics that differed between the implant surfaces, i.e. surface morphology, specific surface area, contact angle, hydroxylation/hydration, may represent factors that influence the rate of osseointegration.


2015 ◽  
Vol 19 (7) ◽  
pp. 1699-1699 ◽  
Author(s):  
José Luis Calvo-Guirado ◽  
Marta Satorres ◽  
Bruno Negri ◽  
Piedad Ramirez-Fernandez ◽  
Jose Eduardo Maté-Sánchez de Val ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2602
Author(s):  
Aslihan Secgin-Atar ◽  
Gokce Aykol-Sahin ◽  
Necla Asli Kocak-Oztug ◽  
Funda Yalcin ◽  
Aslan Gokbuget ◽  
...  

The aim of our study was to obtain similar surface properties and elemental composition to virgin implants after debridement of contaminated titanium implant surfaces covered with debris. Erbium-doped:yttrium, aluminum, and garnet (Er:YAG) laser, erbium, chromium-doped:yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser, curette, and ultrasonic device were applied to contaminated implant surfaces. Scanning electron microscopy (SEM) images were taken, the elemental profile of the surfaces was evaluated with energy dispersive X-ray spectroscopy (EDX), and the surface roughness was analyzed with profilometry. Twenty-eight failed implants and two virgin implants as control were included in the study. The groups were designed accordingly; titanium curette group, ultrasonic scaler with polyetheretherketone (PEEK) tip, Er: YAG very short pulse laser group (100 μs, 120 mJ/pulse 10 Hz), Er: YAG short-pulse laser group (300 μs, 120 mJ/pulse, 10 Hz), Er: YAG long-pulse laser group (600 μs, 120 mJ/pulse, 10 Hz), Er, Cr: YSGG1 laser group (1 W 10 Hz), Er, Cr: YSGG2 laser group (1.5 W, 30 Hz). In each group, four failed implants were debrided for 120 s. When SEM images and EDX findings and profilometry results were evaluated together, Er: YAG long pulse and ultrasonic groups were found to be the most effective for debridement. Furthermore, the two interventions have shown the closest topography of the sandblasted, large grit, acid-etched implant surface (SLA) as seen on virgin implants.


Sign in / Sign up

Export Citation Format

Share Document