scholarly journals Evaluation of Green Synthesis of Ag Nanoparticles Using Eruca sativa and Spinacia oleracea Leaf Extracts and Their Antimicrobial Activity

2014 ◽  
Vol 12 (1) ◽  
Author(s):  
Ibrahim A. Alaraidh ◽  
Mohamed M. Ibrahim ◽  
Gehan A. El-Gaaly
2019 ◽  
Vol 23 (10) ◽  
pp. 1795-1804
Author(s):  
H. Hassan ◽  
K.I. Omoniyi ◽  
F.G. Okibe ◽  
A.A. Nuhu ◽  
E.G. Echioba

The need for new antimicrobial agent has drawn attention on developing new and emerging materials based on nanoparticles with antimicrobial activity. The aim of this research was to evaluate the antibacterial activity of nanoparticles of titanium dioxide. A green synthesis of TiO2 nanoparticles was done using a plant extract of H. thelbiecea and Ananos seneglensisa The presence of various photochemical like flavonoids, steroids, polyphenols, and terpenoids was investigated by following standard biochemical methods. The titanium oxide nanoparticles (TiO2 NPs) synthesized was confirmed by their change of colour to brown and reddish brown due to the phenomenon of surface Plasmon resonance. The characterization studied was done by UV-vis spectroscopy, scanning electron microscopy (SEM), X-Ray diffraction (XRD) and Fourier Transmission infrared spectroscopy (FTIR). The green synthesized TiO2 NPs excitation was confirmed using UV–Vis spectrophotometer at 270 and 290 nm. SEM revealed that the synthesized TiO2 NPs are spherical and crystalline in nature. The overall sizes are 40 and 50 nm for H. thelbiecea and Ananos respectively. FTIR spectroscopy analysis showed the presence of flavonoid, polyphenols and amide groups likely to be responsible for the green synthesis of titanium oxide nanoparticles using H. thelbiecea and Ananos seneglensis aqueous leaf extracts .The XRD pattern showed the characteristic Bragg peaks of (111), (200), (220) and (311) facets of the anatase titanium oxide nanoparticles and confirmed that these nanoparticles are crystalline and spherical in nature. The two plants used to synthesized titanium oxide nanoparticle (H. thelbiecea and ananos seneglensisa) showed good antimicrobial activity against clinically important pathogens.. The antimicrobial study of TiO2 NPs shows that 20 μg/ml TiO2 NPs is effective for complete inactivation of Gram positive, Gram negative as well as fungal cultures. This effective microbial inactivation is mainly attributed to its ability to cause damage to the cell membrane.Keywords: Titanium oxide, phytochemicals, antimicrobial activity, H. thelbiecea, Ananos seneglensisa


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Henry F. Aritonang ◽  
Harry Koleangan ◽  
Audy D. Wuntu

Plant-mediated synthesis of nanomaterials has been increasingly gaining popularity due to its eco-friendly nature and cost-effectiveness. In the present study, we synthesized silver (Ag) nanoparticles using aqueous extracts of fresh leaves of Impatiens balsamina and Lantana camara medicinal plants as bioreducing agents. This method allowed the synthesis of nanoparticles, which was confirmed by ultraviolet-visible (UV-Vis) spectrophotometry and transmission electron microscopy (TEM). UV-Vis spectra and visual observation showed that the color of the fresh leaf extracts of L. camara and I. balsamina turned into grayish brown and brownish yellow, respectively, after treatment with Ag precursors. In addition, TEM analysis confirmed that AgNO3 solutions for all concentrations produced Ag nanoparticles and their average size was less than 24 nm. Moreover, aqueous leaf extracts of I. balsamina and L. camara were separately tested for their antimicrobial activity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria. The results showed that the bacterial growth was inhibited by the extracts containing Ag nanoparticles. Statistical calculation performed using the Tukey test showed that zones of inhibition for the two bacteria produced by the aqueous leaf extracts of L. camara containing 3 mM and 5 mM Ag precursors were not significantly different from that by ciprofloxacin as positive control. On the contrary, there was significant difference between the zone of inhibition for E. coli by ciprofloxacin and that by the extracts of I. balsamina leaves containing 3 mM and 5 mM Ag precursors. A similar result was observed on the zone of inhibition for S. aureus by the extracts of I. balsamina leaves containing 3 mM Ag precursor. It was shown that the aqueous extracts of fresh L. camara leaves containing Ag nanoparticles were comparable to ciprofloxacin in inhibiting bacterial growth.


2019 ◽  
Vol 16 (3(Suppl.)) ◽  
pp. 0689
Author(s):  
Mohammad Et al.

           Biosynthesis of nanoparticles has received considerable attention due to the growing need to develop environmentally benign nanoparticle synthesis processes that do not use toxic chemicals. Therefore, biosynthetic methods employing both biological agents such as bacteria and fungus or plant extracts have emerged as a simple and a viable alternative to chemical synthetic and physical method .It is well known that many microbes produce an organic material either intracellular or extracellular which is playing important role in the remediation of toxic metals through reduction of metal ions and acting as interesting Nano factories. As a result, in the present study Ag NPs were synthesized by two methods biosynthetic technique using supernatant of Corynebacterium glutamicum that isolated from soil and green synthesis method by using plant extracts of fresh green plants.Ag NPs which synthesized by two methods were investigated visually by monitoring the color shift of reaction mixture from pale yellow to brown color, UV-Visible spectrophotometer was used to measure maximum absorbance of synthesized Ag NPs. The nanoparticles synthesized from Corynebacterium glutamicum exhibited maximum antimicrobial activity against selected pathogenic and environmental strains more than Ag NPs synthesized by green synthesis method from Spinacia oleracea, Malva parviflora and Eruca sativa. plant extracts


2021 ◽  
Vol 6 (1) ◽  
pp. 52-67
Author(s):  
Saurabh Sharma ◽  
Kuldeep Kumar ◽  
Naveen Thakur

Abstract The presence of various phytochemicals makes the leaf extract-based green synthesis advantageous to other conventional methods, as it facilitates the production of non-toxic by-product. In the present study, leaf extracts from two different plants: Aloe barbadensis miller and Ocimum tenuiflorum, were used to synthesise Ag nanoparticles. The absorbance at 419-432 nm from UV-visible spectroscopy indicates the formation of Ag in the synthesised samples. The effect of precursors’ concentration on the stability, size and shape of the synthesised samples has also been investigated at constant heating temperature, stirring time, and the pH of the solution. The TEM results showed that all the synthesised samples of nanoparticles demonstrated stability with a size range of 7-70 and 9-48 nm with Aloe barbadensis miller and Ocimum tenuiflorum leaf extracts, respectively. The formation of smaller Ag nanoparticles due to utilisation of different precursor concentration and leaf extracts was also explained. The synthesised samples’ anti-bacterial activity was examined against the pathogens, Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. In general, the green synthesis approach established a prospective for developing highly stable Ag nanoparticles with rigid particle shape/size distribution from different leaf extracts for the development of better anti-bacterial agents.


Planta Medica ◽  
2013 ◽  
Vol 79 (05) ◽  
Author(s):  
ADC Abergas ◽  
MCQ Aleria ◽  
ZJS Alimagno ◽  
KNC Batac ◽  
AFM De Lara ◽  
...  

2019 ◽  
Vol 9 (4) ◽  
pp. 268-279
Author(s):  
Mohamed E.I. Badawy ◽  
Ibrahim E.A. Kherallah ◽  
Ahmed S.O. Mohareb ◽  
Mohamed. Z.M. Salem ◽  
Hameda A. Yousef

Background:Plant extracts are important products in the world and have been widely used for isolation of important biologically active products. Because of their significant environmental impact, extensive research has been explored to determine the antimicrobial activity of plant extracts.Methods:Acetone extracts of the bark and leaf of Cupressus sempervirens and Juniperus phoenicea, collected from three different altitudes (125, 391, and 851 m high of sea level) at Al- Jabel Al-Akhdar area, Libya were obtained and analyzed by GC/MS. The antimicrobial activity of the extracts was further evaluated against plant bacteria Rhizobium radiobacter, Erwinia carotovora, Rhodococcus fascians and Ralstonia solanacearum and fungus Botrytis cinerea.Results:The impact of the altitude from the sea level on the quantity and chemical constituents of the extracts was investigated. The yield was largely dependent on tree species and the highest yield (6.50%) was obtained with C. sempervirens L bark of altitude III (851 m of the sea level), while the lowest (1.17%) was obtained with the leaf extract of C. sempervirens L from altitude I (125 m). The chemical composition analyzed by GC/MS confirmed that the leaf extracts of C. sempervirens and J. phoenicea contained a complex mixture of monoterpene hydrocarbons, sesquiterpenes, diterpenes, diterpenoids, terpenophenolic, steroids and phthalates. However, the bark extracts of both trees contained a mixture of sesquiterpenes, diterpenes, diterpenoids, terpenophenolics, phthalates, retinol and steroids. These constituents revealed some variability among the extracts displaying the highest interesting chemotype of totarol (terpenophenolic) in all extracts (14.63-78.19% of the total extract). The extracts displayed a noteworthy antifungal potency with varying degrees of inhibition of growth with EC50 values ranged from 78.50 to 206.90 mg/L. The extracts obtained from the leaves of C. sempervirens showed that the highest inhibitory activity was obtained with the extract of altitude II (391 m) with MIC 565, 510, 380 and 710 mg/L against E. carotovora, R. fascians, and R. radiobacter and R. solanacearum, respectively.Conclusion:Based on antimicrobial activity, raw plant extracts can be a cost-effective way to protect crops from microbial pathogens. Because plant extracts contain several antimicrobial compounds, the development of resistant pathogens can be delayed.


Sign in / Sign up

Export Citation Format

Share Document