scholarly journals Comprehensive study of the intestinal absorption of four phenolic compounds after oral administration of Ananas comosus leaf extract in vivo and in vitro

2013 ◽  
Vol 7 (26) ◽  
pp. 1781-1792 ◽  
Author(s):  
Yu-Shuang Chai
2021 ◽  
pp. 114-125
Author(s):  
Mohammed A. Sulaiman ◽  
Mahmoud S. Jada ◽  
Augustine Elizabeth ◽  
Abubakar Umar Modibbo

The in vitro antioxidant activity and in vivo hepatocurative and nephrocurative potential of Newbouldia laevis aqueous leaf extract (NLALE) was evaluated. The study used 30 male, albino rats (Rattus norvegicus) weighing 180 ± 20 g, of which 25 were intoxicated by oral administration of a single dose of diclofenac (100 mg/kg b. wt.). Animals were treated by oral administration of silymarin (200 mg/kg b. wt.), furosemide (1.5 mg/kg b. wt.) and NLALE (200 mg/kg and 400 mg/kg b. wt.) for seven consecutive days before animals were sacrificed on the 8th day and serum/plasma was analyzed for biochemical markers of hepatotoxicity and nephrotoxicity. Phytochemical screening of NLALE revealed the presence of alkaloids, flavonoids, glycosides, phenols, saponins, steroids and tannins. The extract scavenged DPPH radical, reduced Fe3+ and inhibited TBARs in comparable manner to ascorbic acid in vitro. NLALE also attenuated diclofenac-induced liver and kidney intoxication as indicated by the significantly (p<0.05) reduced levels of serum biomarkers of hepatotoxicity: ALT, AST, bilirubin, but increased total protein levels and nephrotoxicity: urea, creatinine, Na+ and K+. The observed effects are dose dependent as the 400 mg/kg b. wt. appeared to be more potent than the 200 mg/kg b. wt. dose. It may be concluded from this study that Newbouldia laevis leaf has ameliorative effect against diclofenac-induced hepatotoxicity and nephrotoxicity probably through antioxidative mechanism and the curative claim and the folkloric use of the plant in the treatment of liver and kidney diseases have been scientifically validated


2018 ◽  
Vol 15 (9) ◽  
pp. 1305-1311 ◽  
Author(s):  
Giovanni Monastra ◽  
Yula Sambuy ◽  
Simonetta Ferruzza ◽  
Daniela Ferrari ◽  
Giulia Ranaldi

2019 ◽  
Vol 18 (26) ◽  
pp. 2209-2229 ◽  
Author(s):  
Hai Pham-The ◽  
Miguel Á. Cabrera-Pérez ◽  
Nguyen-Hai Nam ◽  
Juan A. Castillo-Garit ◽  
Bakhtiyor Rasulev ◽  
...  

One of the main goals of in silico Caco-2 cell permeability models is to identify those drug substances with high intestinal absorption in human (HIA). For more than a decade, several in silico Caco-2 models have been made, applying a wide range of modeling techniques; nevertheless, their capacity for intestinal absorption extrapolation is still doubtful. There are three main problems related to the modest capacity of obtained models, including the existence of inter- and/or intra-laboratory variability of recollected data, the influence of the metabolism mechanism, and the inconsistent in vitro-in vivo correlation (IVIVC) of Caco-2 cell permeability. This review paper intends to sum up the recent advances and limitations of current modeling approaches, and revealed some possible solutions to improve the applicability of in silico Caco-2 permeability models for absorption property profiling, taking into account the above-mentioned issues.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michele Dei Cas ◽  
Jessica Rizzo ◽  
Mariangela Scavone ◽  
Eti Femia ◽  
Gian Marco Podda ◽  
...  

AbstractLow-dose aspirin (ASA) is used to prevent cardiovascular events. The most commonly used formulation is enteric-coated ASA (EC-ASA) that may be absorbed more slowly and less efficiently in some patients. To uncover these “non-responders” patients, the availability of proper analytical methods is pivotal in order to study the pharmacodynamics, the pharmacokinetics and the metabolic fate of ASA. We validated a high-throughput, isocratic reversed-phase, negative MRM, LC–MS/MS method useful for measuring circulating ASA and salicylic acid (SA) in blood and plasma. ASA-d4 and SA-d4 were used as internal standards. The method was applied to evaluate: (a) the "in vitro" ASA degradation by esterases in whole blood and plasma, as a function of time and concentration; (b) the "in vivo" kinetics of ASA and SA after 7 days of oral administration of EC-ASA or plain-ASA (100 mg) in healthy volunteers (three men and three women, 37–63 years). Parameters of esterases activity were Vmax 6.5 ± 1.9 and Km 147.5 ± 64.4 in plasma, and Vmax 108.1 ± 20.8 and Km 803.2 ± 170.7 in whole blood. After oral administration of the two formulations, tmax varied between 3 and 6 h for EC-ASA and between 0.5 and 1.0 h for plain-ASA. Higher between-subjects variability was seen after EC-ASA, and one subject had a delayed absorption over eight hours. Plasma AUC was 725.5 (89.8–1222) for EC-ASA, and 823.1(624–1196) ng h/mL (median, 25–75% CI) for plain ASA. After the weekly treatment, serum levels of TxB2 were very low (< 10 ng/mL at 24 h from the drug intake) in all the studied subjects, regardless of the formulation or the tmax. This method proved to be suitable for studies on aspirin responsiveness.


Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 309
Author(s):  
Olukayode O. Aremu ◽  
Adebola O. Oyedeji ◽  
Opeoluwa O. Oyedeji ◽  
Benedicta N. Nkeh-Chungag ◽  
Constance R. Sewani Rusike

Oxidative stress has gained attention as one of the fundamental mechanisms responsible for the development of hypertension. The present study investigated in vitro and in vivo antioxidant effects of 70% ethanol-water (v/v) leaf and root extracts of T. officinale (TOL and TOR, respectively). Total phenolic and flavonoid content of plant extracts were assessed using Folin Ciocalteau and aluminium chloride colorimetric methods; while, 2,2-diphenyl-1-picrlhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) protocols were used to determine the free radical scavenging and total antioxidant capacities (TAC), respectively. The in vivo total antioxidant capacity and malondialdehyde acid (MDA) levels for lipid peroxidation tests were performed on organ homogenate samples from Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats treated with leaf extract, TOL (500 mg/kg/day) and TOR (500 mg/kg/day) for 21 days. Results showed that compared to TOR, TOL possessed significantly higher (p < 0.01) polyphenol (4.35 ± 0.15 compared to 1.14 ± 0.01) and flavonoid (23.17 ± 0.14 compared to 3 ± 0.05) content; free radical scavenging activity (EC50 0.37 compared to 1.34 mg/mL) and total antioxidant capacities (82.56% compared to 61.54% ABTS, and 156 ± 5.28 compared to 40 ± 0.31 FRAP) and both extracts showed no toxicity (LD50 > 5000 mg/kg). TOL and TOR significantly (p < 0.01) elevated TAC and reduced MDA levels in targets organs. In conclusion, T. officinale leaf extract possesses significant anti-oxidant effects which conferred significant in vivo antioxidant protection against free radical-mediated oxidative stress in L-NAME-induced hypertensive rats.


2012 ◽  
Vol 33 (5) ◽  
pp. 246-256 ◽  
Author(s):  
Bilal S. Abuasal ◽  
Hisham Qosa ◽  
Paul W. Sylvester ◽  
Amal Kaddoumi

2016 ◽  
Vol 43 (5) ◽  
pp. 812-829 ◽  
Author(s):  
Gurunath Surampalli ◽  
Madhuchander Satla ◽  
Basavaraj K. Nanjwade ◽  
Paragouda A. Patil

2015 ◽  
Vol 5 (4) ◽  
pp. 457-466 ◽  
Author(s):  
Tianxing Gong ◽  
Zhiqin Wang ◽  
Yixi Zhang ◽  
Yubiao Zhang ◽  
Mingxiao Hou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document