scholarly journals Removal of textile dye Remazol Brilliant Blue Reactive (RBBR) using fibers of Citrullus lanatus (watermelon) and Cocos nucifera (green coconut) as adsorbent material

Author(s):  
Melissa Dominique de Sousa Krueger ◽  
Ana Carolina Volkmann ◽  
Karine Thaise Rainert

The accumulation of agro-industrial waste causes major environmental problems since most of these wastes are disposed of improperly. Among them, there are the watermelon (Citrullus lanatus) and the green coconut (Cocos nucifera), fruits of resistant and fibrous peels which are discarded in landfills because they are not widely used. Thus, the adsorption capacity of the Remazol Brilliant Blue Reactive (RBBR) dye was investigated using green coconut and watermelon residues as adsorbents. The combined effects of two independent variables (pH and adsorbent mass) were evaluated using the response surface methodology. Under optimal conditions of acid pH and adsorbent mass of 1 g, the dye removal efficiency reached values above 80% for both residues. The adsorption kinetics was described by the pseudo-second order model, while the equilibrium study was represented by the Freundlich isotherm for the watermelon residue and the Langmuir model for the green coconut. The results show that the agroindustrial residues of watermelon and green coconut could be effectively used to remove dye remazol brilliant blue reactive.

2021 ◽  
Author(s):  
Ali H. Jawad ◽  
Rangabhashiyam S ◽  
Ahmed Saud Abdulhameed ◽  
Syed Shatir A. Syed-Hassan ◽  
Zeid A. ALOthman ◽  
...  

Abstract A new biocomposite magnetic crosslinked glutaraldehyde-chitosan/MgO/Fe3O4 (CTS-GL/MgO/Fe3O4) adsorbent was prepared and applied for the removal of reactive blue 19 (RB 19) synthetic textile dye. The prepared CTS-GL/MgO/Fe3O4 was subjected to the several instrumental characterizations such as XRD, FTIR, SEM-EDX, pH-potentiometric titration, and pHpzc analyses. The influence of the input adsorption parameters such as A: CTS-GL/MgO/Fe3O4 dosage, B: initial solution pH, C: process temperature, and D: contact time on RB 19 removal efficiency was statistically optimized using Box-Behnken design (BBD). The analysis of variance (ANOVA) indicates the presence of five significant statistical interactions between input adsorption parameters i.e. (AB, AC, AD, BC, and BD). The adsorption kinetic and equilibrium study reveals a good to the pseudo-second-order model, and multilayer adsorption as proven by Freundlich isotherm model, respectively. The maximum adsorption capacity of CTS-GL/MgO/Fe3O4 towards RB19 was found to be 193.2 mg/g at 45 ºC. This work highlights the development of feasible and recoverable magnetic biocompsite adsorbent with desirable adsorption capacity towards textile dyes with good separation ability by using an external magnetic field.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Gamal Owes El-Sayed ◽  
Talaat Younis Mohammed ◽  
Ashraf Abd-Allah Salama

Sugarcane stalks powder was tested for its efficiency of removing a textile dye Maxilon Red GRL from aqueous solution. Different parameters affecting dye removal efficiency were studied. These parameters include contact time, initial dye concentration, adsorbent dose, ionic strength, pH, and temperature. Langmuir and Freundlich isotherm models were applied to the equilibrium data. The data fitted well with the Langmuir isotherm (). The maximum monolayer adsorption capacity () was found to be 20.96 mg/g at an initial pH of 7.2. The temperature variation study showed that dye adsorption is exothermic and spontaneous with increased randomness at the solid solution interface. The results indicated that sugarcane stalks could be an alternative for more costly adsorbents used for dye removal. The kinetic of the adsorption process followed the pseudo second-order kinetics model.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Mebrahtu Gebrezgiher ◽  
Zebene Kiflie

Textile industries generate large quantities of dye containing wastewater which pose a serious environmental problem. Currently, biosorbents have become desirable for the removal of dyes from textile effluents. In this study, batch experiments were conducted to investigate the biosorption characteristics of cactus peel on the removal of reactive red dye from aqueous solutions. The effects of solution pH, biosorbent dosage, contact time, and initial concentration were studied. The interaction effects of process variables were analysed using response surface methodology. The results showed that removal efficiency increased as initial dye concentration and solution pH decreased and as biosorbent dosage and contact time increased. The highest removal efficiency (99.43%) was achieved at solution pH, initial dye concentration, biosorbent dose, and contact time of 3.0, 40 mg/l, 6 g, and 120 min, respectively. From regression analysis, the Langmuir isotherm was found to better (R2 = 0.9935) represent the biosorption process as compared with the Freundlich isotherm (R2 = 0.9722). Similarly, the pseudo-second-order model was seen to represent very well the biosorption kinetics. The results show that cactus peel has good potential for the removal of reactive red dye.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yeit Haan Teow ◽  
Wan Nur Athirah Wan Mohammad Hamdan ◽  
Abdul Wahab Mohammad

The ability of POME-based graphene shell composite (P-GSC), an adsorbent generated from oil palm wastes abundantly available in Malaysia such as POME and PKS, was examined in removing methylene blue (MB) dye by adsorption. Adsorption experiments, involving a batch column study and a batch equilibrium study, were conducted to investigate the efficiency of synthesized P-GSC from PKS as a base material in the removal of MB dye. The batch column study demonstrated that small-sized synthesized P-GSC from PKS as a base material could remove up to 98.5% for concentration. Therefore, the following batch equilibrium study was carried out on small-sized P-GSC only. Adsorption isotherms and kinetic isotherms were studied, from which the experimental data showed that the adsorption exhibited a good fit with the Freundlich model ( R 2 = 0.8923 ) and followed the pseudo-second order model ( R 2 > 0.98 ). FESEM, XPS, and XRD morphological and elemental analysis indicated the successful graphinization of POME on the P-GSC surface. The concept of deploying POME as the carbonaceous source to produce P-GSC, and then, deploying the resultant P-GSC as the adsorbent for MB dye removal has presented promising practical potential. Such cost-effective and environmentally friendly reuse of waste materials is envisioned to promote a ‘zero-waste industry.’


2017 ◽  
Vol 2 (1) ◽  
pp. 13-26
Author(s):  
Tengku Khamanur Azma Tg. Mohd Zamri ◽  
Mimi Sakinah Abd Munaim ◽  
Zularisam Ab Wahid

Natural dye extracted from the rhizome of Curcuma longa L. were applied to bamboo yarns using exhaustion dyeing process. This study investigates the dyeing behaviour of Curcumin; the major color component isolated from rhizomes of Curcuma longa L.on bamboo yarn. Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich isotherm models were used to test the adsorption process of curcumin on bamboo yarn. Comparison of regression coefficient value indicated that the Freundlich isotherm most fitted to the adsorption of curcumin onto bamboo yarn. Furthermore, the kinetics study on this research fitted the pseudo-second order model which indicates that the basis of interaction was chemical adsorption.


2013 ◽  
Vol 726-731 ◽  
pp. 2380-2383
Author(s):  
Li Xia Li ◽  
Xin Dong Zhai

Modified bentonite was used as adsorbent for the methylene blue adsorption in a batch process. Experimental results show that the adsorption kinetics is well described by pseudo-second-order model and the equilibrium data was better represented by the Freundlich isotherm model. The results revealed that the modified bentonite has the potential to be used as a good adsorbent for the removal of methylene blue from aqueous solutions.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mashael Alshabanat ◽  
Ghadah Alsenani ◽  
Rasmiah Almufarij

The adsorption of crystal violet (CV) onto date palm fibers (DPFs) was examined in aqueous solution at 25°C. The experimental maximum adsorption capacity value was0.66×10−6. Langmuir, Freundlich, Elovich and Temkin models were applied to describe the equilibrium isotherms. The influence of pH and temperature on dye removal was evaluated. The percentage removal of CV dye by adsorption onto DPF at different pH and temperatures showed that these factors play a role in the adsorption process. Thermodynamic analysis was performed, and the Gibbs free energyΔGο, enthalpy changeΔHο, and entropyΔSοwere calculated. The negative values ofΔGοindicate spontaneous adsorption. The negative value ofΔHοindicates that the interaction between CV and DPF is exothermic, and the positive value ofΔSοindicates good affinity between DPF and CV. The kinetic data were fitted to a pseudo-second-order model.


2013 ◽  
Vol 726-731 ◽  
pp. 2736-2741
Author(s):  
Ming Da Liu ◽  
Ge Tian ◽  
Liang Jie Zhao ◽  
Yao Sheng Wang ◽  
Lei Guo ◽  
...  

Five blast-furnace slags were used as adsorbents to remove Pb (II) from aqueous solution. Kinetic studies showed that the sorption process was best described by pseudo-second-order model. Among Langmuir, Freundlich and Temkin isotherms, the Freundlich isotherm had a better fit with the simulation of the adsorption of Pb (II).


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Augustus N. Ebelegi ◽  
Nimibofa Ayawei ◽  
Azibaola K. Inengite ◽  
Donbebe Wankasi

Generation-3 polyamidoamine (PAMAM) dendrimer was implanted on silica to produce a very good adsorbent (G-3 PAMAM-SGA). The composite was characterized and used for the removal of Cd(II) ions from aqueous solution. Kinetic data fit the Lagergren pseudo-second-order model and also follow the intraparticle diffusion kinetic model to an extent, which is an indication that the sorption process is controlled by both mechanisms: intraparticle/film layer and adsorption inside the pores/crevices of the composite. Equilibrium sorption data of Cd(II) on G-3 PAMAM-SGA fit the Freundlich isotherm (R2 = 0.9993) which is indicative of multilayered adsorption that occurred on heterogeneous surfaces. The ΔG° values for all temperatures studied were negative, which indicated a spontaneous and feasible process. The result implies that G-3 PAMAM-SGA is a promising adsorbent for microscale scavenging of Cd(II) ions in aqueous solutions.


2019 ◽  
Vol 25 (5) ◽  
pp. 788-793 ◽  
Author(s):  
Rajamohan Natarajan ◽  
Rajasimman Manivasagan

Textile dye effluent treatment was investigated using a novel biosorbent synthesized from Prosopis cineraria. The influence of operating variables, namely initial COD of the effluent (352-1,303 mg/L) and adsorbent dosage (0.25-4.0 g/L) on the removal efficiency was studied. The results of the biosorption experiments indicated that the equilibrium COD removal efficiency attained was 68% and COD uptake achieved was 90.52 mg/g at an optimal sorbent dose (2.0 g/L). Pseudo second order model fitted well to the experimental data and the rate constant was estimated as 0.098 x 10<sup>-5</sup> g /(mg min) .Chemisorption was identified as the removal mechanism involved. Power function model represented the kinetic data in selected range of COD and kinetic constants were estimated. XRF analysis of the biosorbent confirmed the presence of potassium oxide and calcium oxide as the two major components.


Sign in / Sign up

Export Citation Format

Share Document