scholarly journals Removal of Crystal Violet Dye from Aqueous Solutions onto Date Palm Fiber by Adsorption Technique

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mashael Alshabanat ◽  
Ghadah Alsenani ◽  
Rasmiah Almufarij

The adsorption of crystal violet (CV) onto date palm fibers (DPFs) was examined in aqueous solution at 25°C. The experimental maximum adsorption capacity value was0.66×10−6. Langmuir, Freundlich, Elovich and Temkin models were applied to describe the equilibrium isotherms. The influence of pH and temperature on dye removal was evaluated. The percentage removal of CV dye by adsorption onto DPF at different pH and temperatures showed that these factors play a role in the adsorption process. Thermodynamic analysis was performed, and the Gibbs free energyΔGο, enthalpy changeΔHο, and entropyΔSοwere calculated. The negative values ofΔGοindicate spontaneous adsorption. The negative value ofΔHοindicates that the interaction between CV and DPF is exothermic, and the positive value ofΔSοindicates good affinity between DPF and CV. The kinetic data were fitted to a pseudo-second-order model.

Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2218 ◽  
Author(s):  
Carlos Grande-Tovar ◽  
William Vallejo ◽  
Fabio Zuluaga

In this work, we synthesized chitosan grafted-polyacrylic acid (CS-g-PA) through surface-initiated atom transfer radical polymerization (SI-ATRP). We also studied the adsorption process of copper and lead ions onto the CS-g-PA surface. Adsorption equilibrium studies indicated that pH 4.0 was the best pH for the adsorption process and the maximum adsorption capacity over CS-g-PA for Pb2+ ions was 98 mg·g−1 and for Cu2+ it was 164 mg·g−1, while for chitosan alone (CS), the Pb2+ adsorption capacity was only 14.8 mg·g−1 and for Cu2+ it was 140 mg·g−1. Furthermore, the adsorption studies indicated that Langmuir model describes all the experimental data and besides, pseudo-second-order model was suitable to describe kinetic results for the adsorption process, demonstrating a larger kinetic constant of the process was larger for Pb2+ than Cu2+. Compared to other adsorbents reported, CS-g-PA had comparable or even superior adsorbent capacity and besides, all these results suggest that the new CS-g-PA polymers had potential as an adsorbent for hazardous and toxic metal ions produced by different industries.


2018 ◽  
Vol 77 (5) ◽  
pp. 1313-1323 ◽  
Author(s):  
Jianjun Zhou ◽  
Xionghui Ji ◽  
Xiaohui Zhou ◽  
Jialin Ren ◽  
Yaochi Liu

Abstract A novel magnetic bio-adsorbent (MCIA) was developed, characterized and tested for its Cd(II) removal from aqueous solution. MCIA could be easily separated from the solution after equilibrium adsorption due to its super-paramagnetic property. The functional and magnetic bio-material was an attractive adsorbent for the removal of Cd(II) from aqueous solution owing to the abundant adsorption sites, amino-group and oxygen-containing groups on the surface of Cyclosorus interruptus. The experimental results indicated that the MCIA exhibited excellent adsorption ability and the adsorption process was spontaneous and endothermic. The adsorption isotherm was consistent with the Langmuir model. The adsorption kinetic fitted the pseudo-second-order model very well. The maximum adsorption capacity of Cd(II) onto MCIA was 40.8, 49.4, 54.6 and 56.6 mg/g at 293, 303, 313 and 323 K, respectively. And the MCIA exhibited an excellent reusability and impressive regeneration. Therefore, MCIA could serve as a sustainable, efficient and low-cost magnetic adsorbent for Cd(II) removal from aqueous solution.


2022 ◽  
Author(s):  
Mahboobeh Monjezi ◽  
Vahid Javanbakht

Abstract Geopolymers as sustainable and environmentally friendly “green materials”, can be synthesized by utilizing waste material and by-products. A porous geopolymer foam adsorbent based on ZSM-5 zeolite was prepared using templating emulsion/chemical foaming method in different conditions and used for dye removal in batch and continuous systems. The parameters affecting the dye adsorption including temperature, concentration, and pH, kinetics, isotherm, and thermodynamics of the process were investigated. The results of the geopolymer foam synthesis showed that thermal pretreatment of the zeolite has a positive effect on the strength and adsorption capacity. Moreover, the increase in sodium silicate more than the stoichiometric reduces the strength and adsorption capacity. The findings obtained from the batch adsorption process showed that the adsorption kinetics of the pseudo-second-order model and the adsorption isotherm of the Temkin model is adjusted with the experimental data. Thermodynamic results indicated that the process of dye adsorption with geopolymer foam is exothermic. The results from continuous experiments indicated more compatibility of the adsorption process with the models of Thomas and Bohart-Adams. The maximum adsorption capacity of methylene blue in batch and continuous processes was 9.82 and 8.17 mg/g. The adsorbent reduction was performed successfully by chemical and thermal processes.


2021 ◽  
Vol 34 (1) ◽  
pp. 104-110
Author(s):  
Sonia Rani ◽  
Sudesh Chaudhary

The chickpea husk (Cicer arientum) were activated by chemical modification with sulphuric acid, for its application as biosorbent for the remediation of crystal violet dye from wastewater. Activated chickpea husk (ACH) was characterized for its chemical structure and morphology using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The after effects of leading affecting parameters like dose of adsorbent, time of contact, pH and concentration were studied by commencing experiments in batch mode. Adsorption mechanism and sorption efficiency of ACH was examined using variety of isotherms (Langmuir & Freundlich) and kinetic models (pseudo first order and pseudo second order). Experimental data for adsorption rate was in good harmony with the results obtained using pseudo second order model. The adsorption capacity determined using Langmuir isotherm and pseudo second order model was found to be 142.85 mg/g.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 178
Author(s):  
Serap Sezen ◽  
Vijay Kumar Thakur ◽  
Mehmet Murat Ozmen

Currently, macroporous hydrogels have been receiving attention in wastewater treatment due to their unique structures. As a natural polymer, alginate is used to remove cationic dyes due to its sustainable features such as abundance, low cost, processability, and being environmentally friendly. Herein, alginate/montmorillonite composite macroporous hydrogels (cryogels) with high porosity, mechanical elasticity, and high adsorption yield for methylene blue (MB) were generated by the one-step cryogelation technique. These cryogels were synthesized by adding montmorillonite into gel precursor, followed by chemical cross-linking employing carbodiimide chemistry in a frozen state. The as-prepared adsorbents were analyzed by FT-IR, SEM, gel fraction, swelling, uniaxial compression, and MB adsorption tests. The results indicated that alginate/montmorillonite cryogels exhibited high gelation yield (up to 80%), colossal water uptake capacity, elasticity, and effective dye adsorption capacity (93.7%). Maximum adsorption capacity against MB was 559.94 mg g−1 by linear regression of Langmuir model onto experimental data. The Pseudo-Second-Order model was fitted better onto kinetic data compared to the Pseudo-First-Order model. Improved porosity and mechanical elasticity yielding enhanced dye removal capacity make them highly potential alternative adsorbents compared to available alginate/montmorillonite materials for MB removal.


2016 ◽  
Vol 42 (2) ◽  
pp. 3-11 ◽  
Author(s):  
Gabriela Ciobanu ◽  
Simona Barna ◽  
Maria Harja

AbstractIn the present study the adsorption of Reactive Blue 19 dye on the hydroxyapatite (HAp) nanopowders was investigated. The batch adsorption experiments were performed by monitoring the adsorbent dosage, contact time, dye solution concentration, pH and temperature. At pH 3 and 20°C, high dye removal rates of about 95.58% and 86.95% for the uncalcined and calcined nanohydroxyapatites, respectively, were obtained. The kinetic studies indicated the dye adsorption onto nanohydroxyapatite samples to follow a pseudo-second order model. The Langmuir isotherm was found to be the best to represent the equilibrium with experimental data. The maximum adsorption capacity of uncalcined and calcined nanohydroxyapatite samples has been found to be 90.09 mg/g and 74.97 mg/g, respectively.


2020 ◽  
Vol 7 (3) ◽  
pp. 191811
Author(s):  
Yazhen Wang ◽  
Shuang Li ◽  
Liqun Ma ◽  
Shaobo Dong ◽  
Li Liu

Corn stalk was used as the initial material to prepare a corn stalk matrix-g-polyacrylonitrile-based adsorbent. At first, the corn stalk was treated with potassium hydroxide and nitric acid to obtain the corn stalk-based cellulose (CS), and then the CS was modified by 2-bromoisobutyrylbromide (2-BiBBr) to prepare a macroinitiator. After that, polyacrylonitrile (PAN) was grafted onto the macroinitiator by single-electron transfer living radical polymerization (SET-LRP). A novel adsorbent AO CS-g-PAN was, therefore, obtained by introducing amidoxime groups onto the CS-g-PAN with hydroxylamine hydrochloride (NH 2 OH · HCl). FTIR, SEM and XPS were applied to characterize the structure of AO CS-g-PAN. The adsorbent was then employed to remove Pb(II) and Cu(II), and it exhibited a predominant adsorption performance on Pb(II) and Cu(II). The effect of parameters, such as temperature, adsorption time, pH and the initial concentration of metal ions on adsorption capacity, were examined in detail during its application. Results suggest that the maximum adsorption capacity of Pb(II) and Cu(II) was 231.84 mg g –1 and 94.72 mg g −1 , and the corresponding removal efficiency was 72.03% and 63%, respectively. The pseudo-second order model was more suitable to depict the adsorption process. And the adsorption isotherm of Cu(II) accorded with the Langmuir model, while the Pb(II) conformed better to the Freundlich isotherm model.


2015 ◽  
Vol 72 (8) ◽  
pp. 1437-1445
Author(s):  
Ting Li ◽  
Chencen Guo ◽  
Tonghui Xie ◽  
Chengxianyi Zhou ◽  
Yongkui Zhang

A novel anion exchange resin, quaternary ammonium–Chlorella vulgaris (QACV), was prepared by introducing quaternary ammonium groups onto dried Chlorella vulgaris as base material. Degrees of epoxy, amine and quaternary ammonium groups of QACV were measured. Water retention, optical microscopy, and Fourier transform infrared spectrometry were used to characterize QAVC. The adsorption behavior of QACV towards Ag(CN)2− in different conditions was studied carefully. The results showed that QAVC was efficient to adsorb Ag(CN)2− at pH 9–11, and adsorption equilibrium was almost reached in 30 min. Both kinetics and isotherm parameters in the adsorption process were obtained. The data indicated that the pseudo-second-order model provided a good correlation for adsorption of Ag(CN)2− on QACV and the calculated rate constant of the adsorption was 3.51 g/(mmol min). The equilibrium data fitted well in the Langmuir isotherm and the estimated maximum adsorption capacity qm was 1.96 mmol/g. The dimensionless separation factor RL was between 0 and 1, suggesting that the adsorption process of Ag(CN)2− using QACV was favorable. The QACV could be used successively three times without significantly affecting its adsorption efficiency. Chlorella vulgaris was a potential base material to be modified with quaternary ammonium groups to prepare an adsorbent for adsorption of Ag(CN)2−.


2021 ◽  
Vol 55 (9-10) ◽  
pp. 1131-1142
Author(s):  
BENGÜ ERTAN ◽  

Stinging nettle was used as lignocellulosic adsorbent for the removal of cationic dye – malachite green (MG), and anionic dye – Congo red (CR), from aqueous solution, without any chemical pretreatment. The adsorption equilibrium data fitted well with the Langmuir model for the adsorption of both dyes, with the calculated maximum adsorption capacity of 270.27 mgg-1 and 172.14 mgg-1 for MG and CR, respectively. The adsorption process was controlled by the pseudo-second-order model in the adsorption of MG and by the pseudo-first-order model in the adsorption of CR. The thermodynamics modelling displayed that the process was spontaneous and endothermic. The π–π electron–donor interaction, hydrogen bonds and pore diffusion may also be effective, besides electrostatic interaction between the adsorbate and the adsorbent in the mechanism of MG and CR uptake.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Abdulaziz Ali Alghamdi ◽  
Abdel-Basit Al-Odayni ◽  
Naaser A. Y. Abduh ◽  
Safiah A. Alramadhan ◽  
Mashael T. Aljboar ◽  
...  

The aim of this work was to investigate the adsorptive performance of the polypyrrole-based KOH-activated carbon (PACK) in the removal of the basic dye crystal violet (CV) using a batch adsorption system. The equilibrium data, obtained at different initial CV concentrations ( C 0 = 50 – 500   mg / L ) and temperatures (25–45°C), were interpreted using the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms, with the Langmuir model providing a better fit ( R 2 ≥ 0.9997 ) and a maximum adsorption capacity of 497.51 mg/g at 45°C. Under the examined conditions, the values of the thermodynamic parameters free energy, enthalpy, and entropy indicate a spontaneous, endothermic, and physisorption adsorption process. The kinetic data of the adsorption process were very well described by a pseudo-second-order model ( R 2 ≥ 0.9996 ). However, surface diffusion seems to be the main rate-controlling step. Thus, we concluded that PACK shows commercial potential for the removal of cationic dyes such as CV from industrial effluent.


Sign in / Sign up

Export Citation Format

Share Document