scholarly journals Physical and Mechanical Properties of Wood-Cement Composite with Lignocellulosic Grading Waste Variation

2014 ◽  
Vol 4 (2) ◽  
pp. 69-72 ◽  
Author(s):  
Ronquim Renato Marini ◽  
Ferro Fabiane Salles ◽  
Icimoto Felipe Hideyoshi ◽  
Campos Cristiane Inácio ◽  
Bertolini Marília da Silva ◽  
...  
Author(s):  
V. I. Khirkhasova ◽  

The paper deals with modification of cement composite and concrete with nanocellulose in low and high density. The author presents the study results of the influence of nanocellulose on the cement composite hardening process, as well as the physical and mechanical properties of heavy concrete. The influence of the used additive on the rheological and strength characteristics of concrete is revealed. A new method is proposed to improve the material performance.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 8291-8302
Author(s):  
Mona Shayestehkia ◽  
Habibollah Khademieslam ◽  
Behzad Bazyar ◽  
Hossein Rangavar ◽  
Hamid Reza Taghiyari

The effects of cellulose nanocrystal (CNC) particles were investigated relative to the physical, mechanical, and microstructural properties of wood cement composite panels. Wood and cement were mixed at three ratios of 1:3, 1:3.5, and 1:4. Calcium chloride was added at 3 and 5%. CNC was added to the mixture at five levels (0, 0.1, 0.2, 0.5, and 1%, based on dry weight of cement). The results showed that CNC content of 0.5% had the best impact on the properties. The overall trend showed that with the addition of CNC, tensile, flexural, and physical properties of the composites were considerably enhanced. Scanning electron microscopy demonstrated that the addition of CNC was associated with an improved integrity in the micro-structure of panels.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ali Murat Soydan ◽  
Abdul Kadir Sari ◽  
Burcu Duymaz ◽  
Recep Akdeniz ◽  
Bahadır Tunaboylu

This present study was carried out to check the feasibility of different cellulose fibers obtained from cropped virgin cellulose, blenched eucalyptus, and araucaria pulps through different new environmentally friendly curing processes for fiber-cement production. The aim is to introduce the different sources of cellulose fibers with lower cost to produce the “fiber-cement without autoclave” (FCWA). The slurries used in the experiments contain approximately 8% wt. of cellulose. The influence of the waste marble powder addition to the cement mixture was also studied. The physical and mechanical properties of the products which were prepared with this method under different curing conditions were investigated. The mechanical properties of eucalyptus cellulose appear to offer the best combination, especially after longer air-cure cycles. The results showed that the production of FCWA is very economical by using waste marble powders. And moreover, two new types of cellulose fibers (eucalyptus and araucaria celluloses; EuC and ArC, resp.), which provide a better density and packing in the fiber-cement leading to better modulus of rupture (MOR) and modulus of elasticity (MOE) values as virgin cellulose (ViC), are very usable for production of the fiber-cement in industrial scale.


Author(s):  
Bintoro Siswo Nugroho ◽  
Yoga Pebrianto ◽  
Irfana Diah Faryuni ◽  
Asifa Asri

This study examines the effect of nanosilica addition to the physical and mechanical properties of sugar palm fibers (SPFs) reinforced cement composite concrete. The composite concrete ingredients are SPFs as the filler, cement and nano-silica as the matrix, CaCl2 as the catalyst, and water. Testing and fabrication of the composite concrete were performed according to the standard of ASTM C 1185 and ASTM C 1186. The results obtained show that, in general, the addition of nanosilica improves the quality of the composite concrete. A positive effect is attained by adding nanosilica to its optimum amount. The excessive addition of nanosilica reduces the quality of the composite. The composite's mechanical property that is negatively affected by the addition of the nanosilica is the elasticity, in which more nanosilica added stiffer the composite.


2017 ◽  
Vol 14 (1) ◽  
pp. 20 ◽  
Author(s):  
Eratodi IGLB ◽  
Ariawan Putu

Rigid concrete pavement is a pavement needed on a special typical load area and alsoneeded a low maintenance. Problems arise when there is limited sand material available and the costis also expensive. Solutions developed in this research apply cement composite materials mixedwith bamboo shavings waste hence building materials that are lightweight, environmentally friendlyand has the character of a concrete class were obtained. This cement composite material hasadvantages in utilization of bamboo shaving waste and therefore reduces environmental pollution.The purpose of this research were to engineer alternative paving materials in the form of pavingblock made of bamboo shaving waste mixture composite cement. This research has obtained theoptimum physical and mechanical properties of the composite cement material and paving block at aspecific mixture composition. The physical and mechanical properties that are tested on pavingblock samples had five compositions variation of cement (S): sand (P): and bamboo fibre (B) of1:6:0; 1:4.5:1.5; 1:3:3; 1:1.5:4.5; and 1:0:6 respectively with catalyst of CaCl2 as much as 3 %volume. The results have showed that the physical properties of the concrete slab have optimumwater content of 16.67 % at variation of 1:4.5:1.5 and optimum mass density of 0.550 kg/m3 atvariation of 1:3:3. The mechanical properties test of the concrete slab have showed meancompressive strength of 19.8 MPa, mean Modulus of Rupture (MOR) of 16.40 MPa and meanModulus of Elasticity (MOE) of 11,500 MPa respectively at variation of 1:4.5:1.5. Optimum wearresistance value at variation of 1:3:3 on average were 0.698 mm/min. The physical properties testresults for the paving block had mean water content of 6.77 % and mean mass density of 0.761kg/m3 respectively at variation of 1:3:3. The value of mean MOR, mean MOE and mean wearresistance were 27.16 MPa, 11,583 MPa and 0.864 mm/min respectively for variation of 1:3:3. Abstrak: Perkerasan jalan beton merupakan perkerasan yang dibutuhkan pada area bertipikal bebankhusus dan low maintenance. Permasalahan penggunaan beton muncul ketika ketersediaan bahanpasir terbatas dan harganya mahal. Solusi yang dikembangkan dalam penelitian ini menerapkanbahan komposit semen dengan limbah serutan bambu sehingga diperoleh bahan bangunan yangringan, ramah lingkungan dan memiliki karakter sekelas beton. Bahan semen komposit ini memilikikeuntungan dalam pendayagunaan limbah serutan bambu sehingga ikut mengurangi pencemaranlingkungan. Tujuan penelitian ini adalah membuat rekayasa komponen bahan alternatif perkerasanjalan dalam bentuk paving block dari semen komposit campuran bahan limbah serutan bambu.Penelitian ini mendapatkan sifat fisika dan mekanika optimum bahan semen komposit dan pavingblock pada komposisi campuran tertentu. Sifat fisika dan mekanika yang diuji pada benda uji pavingblock dengan 5 variasi perbandingan semen(S): pasir(P): dan serat bambu(B), yaitu 1:6:0; 1:4,5:1,5;1:3:3; 1:1,5:4,5 dan 1:0:6 dengan katalis CaCl2 sebanyak 3% volume. Hasilnya menunjukkan sifatfisika papan semen memiliki nilai optimum kadar air 16,67% pada variasi 1:4,5:1,5 dan berat jenisoptimum 0,550 kg/m3 pada variasi 1:3:3. Hasil uji sifat mekanika papan semen yaitu kuat tekan rataratasebesar 19,8 MPa, Modulus of Repture (MOR) rata-rata sebesar 16,40 MPa dan Modulus ofElasticity (MOE) rata-rata sebesar 11.500 MPa pada variasi 1:4,5:1,5. Nilai ketahanan aus optimumpada variasi 1:3:3 rata-rata sebesar 0,698 mm/menit. Hasil uji sifat fisika paving block dengan kadarair rata-rata 6,77% dan kerapatan rata-rata 0,761 kg/m3 pada variasi 1:3:3. Nilai rata-rata MOR,MOE dan ketahanan aus masing-masing sebesar 27,16 MPa, 11.583 MPa, dan 0,864 mm/menit padavariasi 1:3:3.Kata kunci : Serutan bambu, semen komposit, paving block.


2014 ◽  
Vol 59 ◽  
pp. 550-557 ◽  
Author(s):  
J.N. Eiras ◽  
F. Segovia ◽  
M.V. Borrachero ◽  
J. Monzó ◽  
M. Bonilla ◽  
...  

2020 ◽  
Vol 3 (8) ◽  
pp. 200-208
Author(s):  
Mukhiddinov Dilshod Davronovich

This article is devoted to the study of technological properties of opokoid rocks of Uzbekistan and their influence on physical and mechanical indices of Portland cement of JSC "Kizilkumcement." Accelerated hydrolysis of Portland cement minerals and their chemical interaction with additive on principle of acid-basic interaction, which leads to increased degree of compaction and structural strengthening of formed cement composite due to rapid absorption of lime and opocy rock with developed structure, are shown.


2019 ◽  
Vol 1 (2) ◽  
pp. 153-163 ◽  
Author(s):  
Temidayo E. Omoniyi

This study was designed to evaluate the physical and mechanical properties of cement-bonded composite made from oil palm (Elaeisguineensis) empty fruit bunch (OPEFB) fibres. The production variables investigated were pre-treatment of fibres with water at varying temperatures (cold, 60°C and 100°C), five chemical additive (NaOH) concentrations (2%, 4%, 6%, 8%, and 10%), OPEFB fibres ash content at three cement replacement levels (10%, 20%, and 30%) and three fibre contents (5%, 10%, and 15%) by weight of cement. The composites were tested for modulus of elasticity (MOE), modulus of rupture (MOR), internal bonding strength (IBS), compressive strength, density, thickness swelling (TS), and water absorption (WA). The pre-treatment of fibre with water at a temperature of 60°C and a NaOH concentration of 8% significantly enhanced and modified the performance of the composites. It increased MOE (from 5.5 to 8.9GPa) and MOR (from 3.6 to 7.3MPa), and decreased WA (from 26.2 to 12.8%) and TS (from 2.5 to 0.5%). The results revealed that pre-treatment of fibres, partially replacing cement with OPEFB fibre ash and fibre contents had a marked influence on the properties of the composite board produced (p< 0.05). It was concluded that pre-treatment of OPEFB fibres, when optimised, enhanced the sorption resistance and some mechanical properties of the cement composite.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5983
Author(s):  
Donatas Sikarskas ◽  
Valentin Antonovič ◽  
Jurgita Malaiškienė ◽  
Renata Boris ◽  
Rimvydas Stonys ◽  
...  

This study addresses the application of polyvinyl alcohol (PVA) fibers to improve the performance of lightweight cement composites with pozzolans. Blended cement mixes based on expanded glass granules were modified with PVA fibers (Type A: Ø40 µm, L = 8 mm and Type B: Ø200 µm, L = 12 mm). The following research methods were used to analyse the effect of the fibers on the structure of cement matrix and physical-mechanical properties of lightweight composite: SEM, XRD, DTG, calorimetry tests, and standard test methods of physical and mechanical properties. Results from the tests showed that a denser layer of hydrates was formed around the PVA fiber and the amounts of portlandite, CSH, and CASH formed in the specimens with PVA were found to be higher. PVA fibers of Type A accelerated hydration of the cement paste, slightly increased the compressive strength of the lightweight composite, but had no significant effect on the values of density, ultrasonic pulse velocity and flexural strength. The shrinkage of cement composite was significantly reduced using both types of PVA fiber and both types of PVA fibers increased the fracture energy of lightweight cement composite with expanded granules.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Tahereh Soleimani ◽  
Ali Akbar Merati ◽  
Masoud Latifi ◽  
Ali Akbar Ramezanianpor

The influence of adding Estabragh fibers into the cement composites of mortar on surface cracks and mechanical properties of mortar has been studied at various fiber proportions of 0.25%, 0.5%, and 0.75%. The mortar shrinkage was evaluated by counting the number of cracks and measuring the width of cracks on the surface of mortar specimens. Although the Estabragh fibers loss their strength in an alkali environment of cement composites, the ability of Estabragh fibers to bridge on the microcracks in the mortar matrix causes a decrease in the number of cracks and in their width on the surface of the mortar samples in comparison with the plain mortar. However, considering the mechanical properties of specimens such as bending strength and compressive strength, among all fiber proportions, only the specimens with 0.25% of Estabragh fiber performed better in all respects compared to the physical and mechanical properties of reinforced cement composite of mortar. Consequently, by adding 0.25% of Estabragh fibers to the cement mortar, a remarkable inhibition in crack generation on fiber-containing cement composite of mortar is achieved.


Sign in / Sign up

Export Citation Format

Share Document