scholarly journals Determination of the critical distance in the procedure of explosive welding

2020 ◽  
Vol 68 (4) ◽  
pp. 823-844
Author(s):  
Miloš Lazarević ◽  
Bogdan Nedić ◽  
Jovica Bogdanov ◽  
Stefan Đurić

Introduction/purpose: When performing the explosive welding procedure, for the safety of workers, it is necessary to take into account the minimum distance between the workers and the place of explosion at the time of explosion. Negligence can cause temporary hearing loss, rupture of the eardrum and in some cases even the death of workers. The aim of this paper is to determine the critical distance based on the mass of explosive charge required for explosive welding, provided that the limit pressure is 6.9 kPa in the case of temporary hearing loss and 35 kPa in the case of eardrum rupture. This paper does not take into account other effects of the explosion than those caused by the shock wave. Methods: Depending on the type of explosion, the equivalent explosive mass was calculated. Based on the equivalent explosive mass and the limit pressure, the minimum distances were calculated using the Sadovsky and Kingery-Bulmash equations. Results: The corresponding tables show the results of the calculation of the critical distance of workers from the place of the explosion when there may be temporary hearing loss or rupture of the eardrum. The calculated value of the critical explosion distance by the Kingery-Bulmash method, under the condition of the maximum pressure for temporary hearing loss, is 5.62% lower than the distance value obtained by the Sadovsky method while the value of the critical explosion distance calculated by the Kingery-Bulmash method, under the condition of the maximum pressure for eardrum rupture, is 7.83% lower than the value obtained by the Sadovsky method. Conclusion: The results of the calculation showed that the critical distance from the explosion can be successfully calculated and that the obtained values have small differences depending on the applied calculation method.

2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Leandro Luiz Silva de França ◽  
Andréa de Seixas ◽  
Luciene Ferreira Gama ◽  
João Naves de Moraes

Abstract: The forward intersection method is already widely used in the geodetic survey of coordinates of inaccessible points, especially when only angle measurements are available, in this case, also called the triangulation method. However, the mathematical solution of the 3D forward intersection with the analytical definition of spatial lines, resolved by the Minimum Distances Method, is still not widespread in the academic and professional environment. This mathematical modeling determines the 3D coordinates of a point located in the middle of the minimum distance between two or more spatial lines, which spatially "intersect" towards the observation point. This solution is more accurate than others presented in the literature because it simultaneously solves the problem of 3D determination of a point by the method of least squares, in addition to providing an estimate of the coordinate precision, which are inherent to the adjustment. This work, therefore, has the objective of explaining the Minimum Distances Method for the spatial intersection of targeted measurements with a Total Station from two or more known observation points for the 3D determination of inaccessible points located in corners of buildings. For the analysis of the method, a Python tool was developed for QGIS that calculates the 3D coordinates and generates the adjustment processing report, being applied with real observations of the Geodetic survey of the SUDENE building, in Recife-PE. The methodology developed in this work proved to be suitable for measurements of large structures, achieving spherical precision better than ±1.0 cm, following the Brazilian standards for urban cadastre.


2016 ◽  
Vol 716 ◽  
pp. 114-120 ◽  
Author(s):  
Sebastian Mróz ◽  
Piotr Szota ◽  
Teresa Bajor ◽  
Andrzej Stefanik

The paper presents the results of physical modelling of the plastic deformation of the Mg/Al bimetallic specimens using the Gleeble 3800 simulator. The plastic deformation of Mg/Al bimetal specimens characterized by the diameter to thickness ratio equal to 1 was tested in compression tests. The aim of this work was determination of the range of parameters as temperature and strain rate that mainly influence on the plastic deformation of Mg/Al bars during metal forming processes. The tests were carried out for temperature range from 300 to 400°C for different strain rate values. The stock was round 22.5 mm-diameter with an Al layer share of 28% Mg/Al bars that had been produced using the explosive welding method. Based on the analysis of the obtained testing results it has been found that one of the main process parameters influencing the plastic deformation the bimetal components is the initial stock temperature and strain rate values.


2002 ◽  
Vol 13 (09) ◽  
pp. 503-520
Author(s):  
Francis Kuk ◽  
Andre Marcoux

Ensuring consistent audibility is an important objective when fitting hearing aids to children. This article reviews the factors that could affect the audibility of the speech signals to children. These factors range from a precise determination of the child's hearing loss to an accurate specification of gain in the chosen hearing aids. In addition, hearing aid technology and features such as multichannel processing, directional microphones, and feedback cancellation that could affect the achievement of consistent audibility are reviewed.


Author(s):  
Meyer Nahon

Abstract The rapid determination of the minimum distance between objects is of importance in collision avoidance for a robot maneuvering among obstacles. Currently, the fastest algorithms for the solution of this problem are based on the use of optimization techniques to minimize a distance function. Furthermore, to date this problem has been approached purely through the position kinematics of the two objects. However, although the minimum distance between two objects can be found quickly on state-of-the-art hardware, the modelling of realistic scenes entails the determination of the minimum distances between large numbers of pairs of objects, and the computation time to calculate the overall minimum distance between any two objects is significant, and introduces a delay which has serious repercussions on the real-time control of the robot. This paper presents a technique to modify the original optimization problem in order to include velocity information. In effect, the minimum distance calculation is performed at a future time step by projecting the effect of present velocity. This method has proven to give good results on a 6-dof robot maneuvering among obstacles, and has allowed a complete compensation of the lags incurred due to computational delays.


2021 ◽  
Vol 1 (6) ◽  
pp. 68-73
Author(s):  
M. S. Tsarkova ◽  
◽  
I. V. Milaeva ◽  
S. Yu. Zaytsev ◽  
◽  
...  

The blood test allows you to give an objective assessment of the state of health of animals and timely identify changes occurring in the body. To assess the content of albumins in the blood serum, the method of measuring the dynamic surface tension on the VRA-1P device, which works according to the method of maximum pressure in the bubble, was used. Based on the results of the measurements, a mathematical model was proposed, and using the regression analysis method, formulas for determining the concentration of albumins were developed, which showed good convergence with other measurement methods.


2021 ◽  
pp. 63-69
Author(s):  
A.L. Vorontsov

On the basis of the system of equations of the theory of plastic flow, the forces, the maximum pressure on the wall of the matrix and the heights of the obtained walls when extruding channels are determined, taking into account the elastic deformation of the matrix. Keywords: die forging, extrusion, misalignment, punch, matrix, plane deformation, stresses. [email protected]


Author(s):  
Issam Abderrahman Joundan ◽  
Said Nouh ◽  
Mohamed Azouazi ◽  
Abdelwahed Namir

<span>BCH codes represent an important class of cyclic error-correcting codes; their minimum distances are known only for some cases and remains an open NP-Hard problem in coding theory especially for large lengths. This paper presents an efficient scheme ZSSMP (Zimmermann Special Stabilizer Multiplier Permutation) to find the true value of the minimum distance for many large BCH codes. The proposed method consists in searching a codeword having the minimum weight by Zimmermann algorithm in the sub codes fixed by special stabilizer multiplier permutations. These few sub codes had very small dimensions compared to the dimension of the considered code itself and therefore the search of a codeword of global minimum weight is simplified in terms of run time complexity.  ZSSMP is validated on all BCH codes of length 255 for which it gives the exact value of the minimum distance. For BCH codes of length 511, the proposed technique passes considerably the famous known powerful scheme of Canteaut and Chabaud used to attack the public-key cryptosystems based on codes. ZSSMP is very rapid and allows catching the smallest weight codewords in few seconds. By exploiting the efficiency and the quickness of ZSSMP, the true minimum distances and consequently the error correcting capability of all the set of 165 BCH codes of length up to 1023 are determined except the two cases of the BCH(511,148) and BCH(511,259) codes. The comparison of ZSSMP with other powerful methods proves its quality for attacking the hardness of minimum weight search problem at least for the codes studied in this paper.</span>


2021 ◽  
Vol 29 (1) ◽  
pp. 13-9
Author(s):  
Dursun Mehmet MEHEL ◽  
Ömer KÜÇÜKÖNER ◽  
Doğukan ÖZDEMİR ◽  
Mehmet ÇELEBİ

Author(s):  
Aleksandr Brailov ◽  
Vitaliy Panchenko

In the present research the optimizing approach to the determination of the parameters of an inaccessible point of an object is developed. The common issues are revealed and essential steps of their resolution are identified. The essence of the problem is an objective contradiction between a requirement for the location of points A and B of the centers of the sighting tubes of optical devices in the same horizontal plane P1 and the lack of a real possibility to perform such to achieve this an identical one-level arrangement without error. The aim of the study is to develop strategies for determining the position of an inaccessible point of an object in the minimum domain between intersecting sighting rays as well as an adaptive algorithm for determining the values of the parameters of an inaccessible point under the given absolute and relative errors. To achieve this aim, the following problems are formulated and solved in the paper: 1. Develop strategies for determining the position of the inaccessible point of the object in the minimum domain between the intersecting sighting rays. 2. Develop an adaptive algorithm for determining the values of the parameters of an inaccessible point based on the specified absolute and relative errors. In the proposed optimizing approach, the three-dimensional geometrical model with crossed directional rays for the determination of coordinates of the inaccessible point of an object is developed. It is discussed that points С and C', coordinated of which to be determined, locates in domain [CDM, CEM], [C'D'M, C'E'M] of the minimum distance ρmin between crossed directional rays. The optimizing problem of the determination of coordinates of an inaccessible point of an object in space is reduced to a problem of the determination of the minimum distance between two crossed directional rays. It’s known from the theory of function of multiple variables that function ρ = f (tC'D', tC'E') reaches its extremum ρmin when its partial derivatives by each variable are equal to zero. Three strategies for selecting the position of the inaccessible point C (xC, yC, zC) in the found minimum region [CDM, CEM] are proposed. The required point C' (xC', yC', zC') can be located, for example, in the middle of the minimum segment [C'D'M, C'E'M]. The essence of the adaptive algorithm is in optimizing the variation of the initial values of data α, α', β, γ, γ', AB, at which the absolute and relative errors of the coordinates of the inaccessible point satisfy the error values set by the customer (0.0001-1.2%) The proposed approach is verified using real experimental data.


Sign in / Sign up

Export Citation Format

Share Document