scholarly journals Salt affected soils under cotton-based irrigation agriculture in southern Kazakhstan

2020 ◽  
Vol 69 (2) ◽  
pp. 1-14 ◽  
Author(s):  
Samat Tanirbergenov ◽  
Elmira Saljnikov ◽  
Beibut Suleimenov ◽  
Abdulla Saparov ◽  
Dragan Cakmak

Soil salinity of the irrigated soils in a cotton farm of Kazakhstan was studied aimed to provide background for reconstruction of collection-drainage system of whole region and preventing soil deterioration. The experimental data obtained for 2012-2014 were plotted for the development of the map of soil salinity (1:10000) seasonally and vertically. In spring 2014 the area under medium saline soil in 0-20 cm layer decreased from 79.5 to 57.7%; the area of weakly saline soils increased from 20.5 to 34.6%. In autumn and winter periods the area of strongly saline soils decreased from 25.6 to 14.1%. The area of non-saline soils was 7.7%. The changes in the ions amount, both vertically and seasonally, occur with transport of salts along soil profile driven by temperature gradients and the level of ground water, i.e., in spring from up to down, and in autumn and winter, contrary from down to up.

2020 ◽  
Vol 17 (36) ◽  
pp. 920-933
Author(s):  
Samat I TANIRBERGENOV ◽  
Beibut U SULEIMENOV ◽  
Dragan CAKMAK ◽  
Elmira SALJNIKOV ◽  
Zhassulan SMANOV

The relevance of the study is conditioned by the fact that the large-scale irrigation of cotton fields in arid and desert areas of the Turkestan region inevitably leads to the processes of soil salinization. Salinity is a global problem for humanity. Soil salinization is associated with drainage problems, improper use of water resources, growing demand for agricultural products, which leads to increased pressure on agricultural land. In this regard, this paper is directed at investigating the soil salinity of the irrigated light serozem in a cotton farm of Southern Kazakhstan (now Turkestan region) under the vertical drainage, which would provide the necessary background for the reconstruction of the collection-drainage system of the whole region, thus contributing to the increasing the net yield and the quality of the row cotton, as well as preventing soil deterioration. The leading method for studying the issues of the article was the dispersion method, according to which the salinity of soils was determined by seasons. The main objectives were studying the dynamics of salts changes seasonally and timely under the vertical drainage and studying the spatial distribution of salts in the cotton-based farm. The results showed that in 2014 there was recorded a positive dynamic of changes compared to 2012. In spring 2014, the area under medium saline soil in the 0-20 cm layer decreased from 79.5 to 57.7 %; the weakly saline soil area increased from 20.5 to 34.6 %. In the autumn and winter periods, the area of strongly saline soils decreased from 25.6 to 14.1 %. The area of non-saline soils was recorded at 7.7 %. The results showed that changes in the amount of the ions, both vertically and seasonally, occur with the transport of salts along with soil profile under the influence of temperature gradients and the level of groundwater, i.e., in spring from up to down, and in autumn and winter, contrary from down to up. The theoretical and practical value of the study lies in the fact that the material for improving, preventing the salinization of soils will lead to an increase in the general level of ecological safety of the region and country in general.


Author(s):  
N Marcar ◽  
D Crawford ◽  
P Leppert ◽  
T Jovanovic ◽  
R Floyd ◽  
...  

This book aims to assist in the management of soil salinity by describing a range of species tolerant of saline soils. 60 species are listed with descriptions containing botanical features, growth characteristics, preferred soils, climates and more. The introductory sections of this book provide general information on issues such as how trees deal with saline soil, their susceptibility to insect pests, where to plant trees and how best to establish them. The main section provides detailed descriptions of 30 species for use on salt-affected land.


2011 ◽  
Vol 19 (2) ◽  
pp. 409-414 ◽  
Author(s):  
Feng-Jiao MA ◽  
Li-Mei TAN ◽  
Hui-Tao LIU ◽  
Shu-Hui YU ◽  
Hong-Juan LIU ◽  
...  

2013 ◽  
Vol 11 (1) ◽  
pp. 95-102 ◽  
Author(s):  
MH Rahman ◽  
MM Alam Patwary ◽  
H Barua ◽  
M Hossain ◽  
MM Hasan

Fifteen salt tolerant CIP (International Potato Centre) Potato genotypes along with BARI (Bangladesh Agricultural Research Institute) Alu 7 (Diamant) and one local variety viz., Dohazari Sada were evaluated at Bashkhali, Chittagong during 2011-12 to screen the suitable genotypes for cultivation in saline areas of Bangladesh. Diamant and Dohazari Sada and all of the CIP genotypes were found to grow well up to 60 DAP (Days After Planting) at saline areas having healthy plants and no senescence was noticed but after that 61-100% plants died due to high level of soil salinity (6.41dS/m) depending on genotypes. Genotype CIP 112 gave the highest yield (21.07 t/ha) and CIP 102 was comparatively less affected by soil salinity than the other genotypes. However, all the salt tolerant CIP genotypes were found to be promising in the saline soil. DOI: http://dx.doi.org/10.3329/agric.v11i1.15249 The Agriculturists 2013; 11(1) 95-102


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Yang-yang Li ◽  
Kai Zhao ◽  
Jian-hua Ren ◽  
Yan-ling Ding ◽  
Li-li Wu

Soil salinity is a global problem, especially in developing countries, which affects the environment and productivity of agriculture areas. Salt has a significant effect on the complex dielectric constant of wet soil. However, there is no suitable model to describe the variation in the backscattering coefficient due to changes in soil salinity content. The purpose of this paper is to use backscattering models to understand behaviors of the backscattering coefficient in saline soils based on the analysis of its dielectric constant. The effects of moisture and salinity on the dielectric constant by combined Dobson mixing model and seawater dielectric constant model are analyzed, and the backscattering coefficient is then simulated using the AIEM. Simultaneously, laboratory measurements were performed on ground samples. The frequency effect of the laboratory results was not the same as the simulated results. The frequency dependence of the ionic conductivity of an electrolyte solution is influenced by the ion’s components. Finally, the simulated backscattering coefficients measured from the dielectric constant with the AIEM were analyzed using the extracted backscattering coefficient from the RADARSAT-2 image. The results show that RADARSAT-2 is potentially able to measure soil salinity; however, the mixed pixel problem needs to be more thoroughly considered.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ruibo Sun ◽  
Xiaogai Wang ◽  
Yinping Tian ◽  
Kai Guo ◽  
Xiaohui Feng ◽  
...  

Globally soil salinity is one of the most devastating environmental stresses affecting agricultural systems and causes huge economic losses each year. High soil salinity causes osmotic stress, nutritional imbalance and ion toxicity to plants and severely affects crop productivity in farming systems. Freezing saline water irrigation and plastic mulching techniques were successfully developed in our previous study to desalinize costal saline soil. Understanding how microbial communities respond during saline soil amelioration is crucial, given the key roles soil microbes play in ecosystem succession. In the present study, the community composition, diversity, assembly and potential ecological functions of archaea, bacteria and fungi in coastal saline soil under amelioration practices of freezing saline water irrigation, plastic mulching and the combination of freezing saline water irrigation and plastic mulching were assessed through high-throughput sequencing. These amelioration practices decreased archaeal and increased bacterial richness while leaving fungal richness little changed in the surface soil. Functional prediction revealed that the amelioration practices, especially winter irrigation with saline water and film mulched in spring, promoted a community harboring heterotrophic features. β-null deviation analysis illustrated that amelioration practices weakened the deterministic processes in structuring coastal saline soil microbial communities. These results advanced our understanding of the responses of the soil microbiome to amelioration practices and provided useful information for developing microbe-based remediation approaches in coastal saline soils.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yang Li ◽  
Wenjing Li ◽  
Lei Ji ◽  
Fanyong Song ◽  
Tianyuan Li ◽  
...  

The biodegradation of organic pollutants is the main pathway for the natural dissipation and anthropogenic remediation of polycyclic aromatic hydrocarbons (PAHs) in the environment. However, in the saline soils, the PAH biodegradation could be influenced by soil salts through altering the structures of microbial communities and physiological metabolism of degradation bacteria. In the worldwide, soils from oilfields are commonly threated by both soil salinity and PAH contamination, while the influence mechanism of soil salinity on PAH biodegradation were still unclear, especially the shifts of degradation genes and soil enzyme activities. In order to explain the responses of soils and bacterial communities, analysis was conducted including soil properties, structures of bacterial community, PAH degradation genes and soil enzyme activities during a biodegradation process of PAHs in oilfield soils. The results showed that, though low soil salinity (1% NaCl, w/w) could slightly increase PAH degradation rate, the biodegradation in high salt condition (3% NaCl, w/w) were restrained significantly. The higher the soil salinity, the lower the bacterial community diversity, copy number of degradation gene and soil enzyme activity, which could be the reason for reductions of degradation rates in saline soils. Analysis of bacterial community structure showed that, the additions of NaCl increase the abundance of salt-tolerant and halophilic genera, especially in high salt treatments where the halophilic genera dominant, such as Acinetobacter and Halomonas. Picrust2 and redundancy analysis (RDA) both revealed suppression of PAH degradation genes by soil salts, which meant the decrease of degradation microbes and should be the primary cause of reduction of PAH removal. The soil enzyme activities could be indicators for microorganisms when they are facing adverse environmental conditions.


2018 ◽  
pp. 41-57 ◽  
Author(s):  
M. V. Konyushkova ◽  
S. Alavipanah ◽  
A. Abdollahi ◽  
S. Hamzeh ◽  
A. Heidari ◽  
...  

The study is focused on the pattern of soil salinity at the young loamy coastal plains of the Caspian Sea in Russia and Iran which were released from water less than 300 years ago. At two key sites of 45×30 m (Russia) and 25×20 m (Iran), the soil sampling with 1 to 5 m grid was performed to the depth of 1 m. The electrical conductivity (1 : 2.5) was measured in soil samples and soil sa-linity maps were compiled. Soils are represented by solonchaks with 2–3% of salts in the top layer or highly saline soils partly leached in the upper 5–10 cm. The ground water table is shallow (2–2.5 m). The studied sites are different in terms of climate, microtopography, and vegetation cover but spatial differentiation of soil salinity is quite similar what is evidenced from the similar distributions (mean values and variance) of electrical conductivity in almost all studied depths. The redistribution of salts is mainly observed in the upper 50 cm with the maximal manifestation in the upper 5 cm.


2021 ◽  
Author(s):  
Nima Shokri ◽  
Amirhossein Hassani ◽  
Adisa Azapagic

<p>Population growth and climate change is projected to increase the pressure on land and water resources, especially in arid and semi-arid regions. This pressure is expected to affect all driving mechanisms of soil salinization comprising alteration in soil hydrological balance, sea salt intrusion, wet/dry deposition of wind-born saline aerosols — leading to an increase in soil salinity. Soil salinity influences soil stability, bio-diversity, ecosystem functioning and soil water evaporation (1). It can be a long-term threat to agricultural activities and food security. To devise sustainable action plan investments and policy interventions, it is crucial to know when and where salt-affected soils occur. However, current estimates on spatio-temporal variability of salt-affected soils are majorly localized and future projections in response to climate change are rare. Using Machine Learning (ML) algorithms, we related the available measured soil salinity values (represented by electrical conductivity of the saturated paste soil extract, EC<sub>e</sub>) to some environmental information (or predictors including outputs of Global Circulation Models, soil, crop, topographic, climatic, vegetative, and landscape properties of the sampling locations) to develop a set of data-driven predictive tools to enable the spatio-temporal predictions of soil salinity. The outputs of these tools helped us to estimate the extent and severity of the soil salinity under current and future climatic patterns at different geographical levels and identify the salinization hotspots by the end of the 21<sup>st</sup> century in response to climate change. Our analysis suggests that a soil area of 11.73 Mkm<sup>2</sup> located in non-frigid zones has been salt-affected in at least three-fourths of the 1980 - 2018 period (2). At the country level, Brazil, Peru, Sudan, Colombia, and Namibia were estimated to have the highest rates of annual increase in the total area of soils with an EC<sub>e</sub> ≥ 4 dS m<sup>-1</sup>. Additionally, the results indicate that by the end of the 21<sup>st</sup> century, drylands of South America, southern and Western Australia, Mexico, southwest United States, and South Africa will be the salinization hotspots (compared to the 1961 - 1990 period). The results of this study could inform decision-making and contribute to attaining the United Nation’s Sustainable Development Goals for land and water resources management.</p><p>1. Shokri-Kuehni, S.M.S., Raaijmakers, B., Kurz, T., Or, D., Helmig, R., Shokri, N. (2020). Water Table Depth and Soil Salinization: From Pore-Scale Processes to Field-Scale Responses. Water Resour. Res., 56, e2019WR026707. https://doi.org/ 10.1029/2019WR026707</p><p>2. Hassani, A., Azapagic, A., Shokri, N. (2020). Predicting Long-term Dynamics of Soil Salinity and Sodicity on a Global Scale, Proc. Nat. Acad. Sci., 117, 52, 33017–33027. https://doi.org/10.1073/pnas.2013771117</p>


Sign in / Sign up

Export Citation Format

Share Document