Study on Optimal Design of a Folding-Type Hatch Cover Considering Material Selection

Author(s):  
Gerry Liston Putra ◽  
Mitsuru Kitamura ◽  
Akihiro Takezawa

Abstract Most shipyard companies maintain efficiency in all aspects of their business to survive. One of these aspects is ship production costs and their reduction. This study proposes a solution to this problem using an optimization method. A hatch cover composed of plates and stiffeners was selected as a case study. In this study, the mass and material cost of the hatch cover was optimized as an objective function using the Pareto approach with developed optimization methods. Plate thickness t, stiffener shape s, and plate material type m were selected as the design variables in this study along with some constraints. To estimate the optimal plate thickness, an expression of stress equations was Developed using an optimization technique. Furthermore, stiffener shape and plate material type selection were optimized using a genetic algorithm (GA). The results show that the optimization method is effective to decrease the mass and material cost of a hatch cover. Introduction The demand for new shipbuilding has decreased because of the effect of the economic crisis that hit almost every country in the world. Shipyard companies must think innovatively and creatively to survive under the pressure of this crisis by evaluating various studies and improvising new methods to achieve efficiency. One of the studies that has been performed examines the methods to reduce the fabrication cost of ship structures to stay profitable through the optimization of work hours, workflow production systems, and structural design.

Author(s):  
Alireza Saremi ◽  
Amir H. Birjandi ◽  
G. Gary Wang ◽  
Tarek ElMekkawy ◽  
Eric Bibeau

This paper describes an enhanced version of a new global optimization method, Multi-Agent Normal Sampling Technique (MANST) described in reference [1]. Each agent in MANST includes a number of points that sample around the mean point with a certain standard deviation. In each step the point with the minimum value in the agent is chosen as the center point for the next step normal sampling. Then the chosen points of all agents are compared to each other and agents receive a certain share of the resources for the next step according to their lowest mean function value at the current step. The performance of all agents is periodically evaluated and a specific number of agents who show no promising achievements are deleted; new agents are generated in the proximity of those promising agents. This process continues until the agents converge to the global optimum. MANST is a standalone global optimization technique and does not require equations or knowledge about the objective function. The unique feature of this method in comparison with other global optimization methods is its dynamic normal distribution search. This work presents our recent research in enhancing MANST to handle variable boundaries and constraints. Moreover, a lean group sampling approach is implemented to prevent sampling in the same region for different agents. The overall capability and efficiency of the MANST has been improved as a result in the newer version. The enhanced MANST is highly competitive with other stochastic methods such as Genetic Algorithm (GA). In most of the test cases, the performance of the MANST is significantly higher than the Matlab™ GA Toolbox.


Author(s):  
R. Oftadeh ◽  
M. J. Mahjoob

This paper presents a novel structural optimization algorithm based on group hunting of animals such as lions, wolves, and dolphins. Although these hunters have differences in the way of hunting but they are common in that all of them look for a prey in a group. The hunters encircle the prey and gradually tighten the ring of siege until they catch the prey. In addition, each member of the group corrects its position based on its own position and the position of other members. If the prey escapes from the ring, the hunters reorganize the group to siege the prey again. A benchmark numerical optimization problems is presented to show how the algorithm works. Three benchmark structural optimization problems are also presented to demonstrate the effectiveness and robustness of the proposed Hunting Search (HuS) algorithm for structural optimization. The objective in these problems is to minimize the weight of bar trusses. Both sizing and layout optimization variables are included, too. The proposed algorithm is compared with other global optimization methods such as CMLPSA (Corrected Multi-Level & Multi-Point Simulated Annealing) and HS (Harmony Search). The results indicate that the proposed method is a powerful search and optimization technique. It yields comparable and in some cases, better solutions compared to those obtained using current algorithms when applied to structural optimization problems.


2021 ◽  
Vol 16 (1) ◽  
pp. 14-18
Author(s):  
László Kota ◽  
Károly Jármai

AbstractIn the research projects and industrial projects severe optimization problems can be met, where the number of variables is high, there are a lot of constraints, and they are highly nonlinear and mostly discrete issues, where the running time can be calculated sometimes in weeks with the usual optimization methods on an average computer. In most cases in the logistics industry, the most robust constraint is the time. The optimizations are running on a typical office configuration, and the company accepts the suboptimal solution what the optimization method gives within the appropriate time limit. That is, why adaptivity is needed. The adaptivity of the optimization technique includes parameters of fine-tuning. On this way, the most sensitive setting can be found. In this article, some additional adaptive methods for logistic problems have been investigated to increase the effectivity, improve the solution in a strict time condition.


2014 ◽  
Vol 14 (05) ◽  
pp. 1450065 ◽  
Author(s):  
FILIPA JOÃO ◽  
ANTÓNIO VELOSO ◽  
SANDRA AMADO ◽  
PAULO ARMADA-DA-SILVA ◽  
ANA C. MAURÍCIO

The motion of the skeletal estimated from skin attached marker-based motion capture(MOCAP) systems is known to be affected by significant bias caused by anatomical landmarks mislocation but especially by soft tissue artifacts (such as skin deformation and sliding, inertial effects and muscle contraction). As a consequence, the error associated with this bias can propagate to joint kinematics and kinetics data, particularly in small rodents. The purpose of this study was to perform a segmental kinematic analysis of the rat hindlimb during locomotion, using both global optimization as well as segmental optimization methods. Eight rats were evaluated for natural overground walking and motion of the right hindlimb was captured with an optoeletronic system while the animals walked in the track. Three-dimensional (3D) biomechanical analyses were carried out and hip, knee and ankle joint angular displacements and velocities were calculated. Comparison between both methods demonstrated that the magnitude of the kinematic error due to skin movement increases in the segmental optimization when compared with the global optimization method. The kinematic results assessed with the global optimization method matches more closely to the joint angles and ranges of motion calculated from bone-derived kinematics, being the knee and hip joints with more significant differences.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4649
Author(s):  
İsmail Hakkı ÇAVDAR ◽  
Vahit FERYAD

One of the basic conditions for the successful implementation of energy demand-side management (EDM) in smart grids is the monitoring of different loads with an electrical load monitoring system. Energy and sustainability concerns present a multitude of issues that can be addressed using approaches of data mining and machine learning. However, resolving such problems due to the lack of publicly available datasets is cumbersome. In this study, we first designed an efficient energy disaggregation (ED) model and evaluated it on the basis of publicly available benchmark data from the Residential Energy Disaggregation Dataset (REDD), and then we aimed to advance ED research in smart grids using the Turkey Electrical Appliances Dataset (TEAD) containing household electricity usage data. In addition, the TEAD was evaluated using the proposed ED model tested with benchmark REDD data. The Internet of things (IoT) architecture with sensors and Node-Red software installations were established to collect data in the research. In the context of smart metering, a nonintrusive load monitoring (NILM) model was designed to classify household appliances according to TEAD data. A highly accurate supervised ED is introduced, which was designed to raise awareness to customers and generate feedback by demand without the need for smart sensors. It is also cost-effective, maintainable, and easy to install, it does not require much space, and it can be trained to monitor multiple devices. We propose an efficient BERT-NILM tuned by new adaptive gradient descent with exponential long-term memory (Adax), using a deep learning (DL) architecture based on bidirectional encoder representations from transformers (BERT). In this paper, an improved training function was designed specifically for tuning of NILM neural networks. We adapted the Adax optimization technique to the ED field and learned the sequence-to-sequence patterns. With the updated training function, BERT-NILM outperformed state-of-the-art adaptive moment estimation (Adam) optimization across various metrics on REDD datasets; lastly, we evaluated the TEAD dataset using BERT-NILM training.


Author(s):  
Patrick Nwafor ◽  
Kelani Bello

A Well placement is a well-known technique in the oil and gas industry for production optimization and are generally classified into local and global methods. The use of simulation software often deployed under the direct optimization technique called global method. The production optimization of L-X field which is at primary recovery stage having five producing wells was the focus of this work. The attempt was to optimize L-X field using a well placement technique.The local methods are generally very efficient and require only a few forward simulations but can get stuck in a local optimal solution. The global methods avoid this problem but require many forward simulations. With the availability of simulator software, such problem can be reduced thus using the direct optimization method. After optimization an increase in recovery factor of over 20% was achieved. The results provided an improvement when compared with other existing methods from the literatures.


1992 ◽  
Vol 28 (1) ◽  
pp. 31-39 ◽  
Author(s):  
N. Gunadi ◽  
M. J. Potts ◽  
R. Sinung-Basuki ◽  
Greta A. Watson

SummaryThree seasons of on-farm experimentation to develop potato production from botanical or true potato seed (TPS) under cool fertile conditions in West Java, Indonesia, are described. Twenty-three farmers experimented with two production systems: use of transplants, and use of seedling tubers produced in nursery beds. There was little yield difference between the systems, but an apparent progeny × system × season interaction was observed. All progenies were more resistant to late blight than the present cultivars grown from tubers. Appropriate matching of progeny and system gave seed of comparable quality with, but total yields slightly less than, certified imported seed of cv. Granola. Ware quality was slightly better than that of cv. Granola. Production costs were markedly less than for a tuber crop, making TPS ideal for small, resource-poor farmers.


2021 ◽  
Vol 13 (4) ◽  
pp. 707
Author(s):  
Yu’e Shao ◽  
Hui Ma ◽  
Shenghua Zhou ◽  
Xue Wang ◽  
Michail Antoniou ◽  
...  

To cope with the increasingly complex electromagnetic environment, multistatic radar systems, especially the passive multistatic radar, are becoming a trend of future radar development due to their advantages in anti-electronic jam, anti-destruction properties, and no electromagnetic pollution. However, one problem with this multi-source network is that it brings a huge amount of information and leads to considerable computational load. Aiming at the problem, this paper introduces the idea of selecting external illuminators in the multistatic passive radar system. Its essence is to optimize the configuration of multistatic T/R pairs. Based on this, this paper respectively proposes two multi-source optimization algorithms from the perspective of resolution unit and resolution capability, the Covariance Matrix Fusion Method and Convex Hull Optimization Method, and then uses a Global Navigation Satellite System (GNSS) as an external illuminator to verify the algorithms. The experimental results show that the two optimization methods significantly improve the accuracy of multistatic positioning, and obtain a more reasonable use of system resources. To evaluate the algorithm performance under large number of transmitting/receiving stations, further simulation was conducted, in which a combination of the two algorithms were applied and the combined algorithm has shown its effectiveness in minimize the computational load and retain the target localization precision at the same time.


2021 ◽  
Vol 10 (6) ◽  
pp. 420
Author(s):  
Jun Wang ◽  
Lili Jiang ◽  
Qingwen Qi ◽  
Yongji Wang

Image segmentation is of significance because it can provide objects that are the minimum analysis units for geographic object-based image analysis (GEOBIA). Most segmentation methods usually set parameters to identify geo-objects, and different parameter settings lead to different segmentation results; thus, parameter optimization is critical to obtain satisfactory segmentation results. Currently, many parameter optimization methods have been developed and successfully applied to the identification of single geo-objects. However, few studies have focused on the recognition of the union of different types of geo-objects (semantic geo-objects), such as a park. The recognition of semantic geo-objects is likely more crucial than that of single geo-objects because the former type of recognition is more correlated with the human perception. This paper proposes an approach to recognize semantic geo-objects. The key concept is that a single geo-object is the smallest component unit of a semantic geo-object, and semantic geo-objects are recognized by iteratively merging single geo-objects. Thus, the optimal scale of the semantic geo-objects is determined by iteratively recognizing the optimal scales of single geo-objects and using them as the initiation point of the reset scale parameter optimization interval. In this paper, we adopt the multiresolution segmentation (MRS) method to segment Gaofen-1 images and tested three scale parameter optimization methods to validate the proposed approach. The results show that the proposed approach can determine the scale parameters, which can produce semantic geo-objects.


2013 ◽  
Vol 726-731 ◽  
pp. 3811-3817
Author(s):  
Yuan Feng ◽  
Ji Xian Wang

The analysis of the slope stability is important in soil conservation. To analyze the slope stability, optimization methods were coded and compared with the traditional experience-based methods. Furthermore, the results were visualized in the program, so that the user can easily check the results and can designate an area, in which the program seeks the center and radius of the most hazardous slide arc. Moreover, the graphic interaction function was implemented in the program. In addition, the Standard Model One, recommended by ACAD (The Association for Computer Aided Design), was calculated by the program, of which the results (safety factor Ks=0.95~0.96) were smaller than the official recommend value (Ks=1). It is because that the traditional slice method, which neglects the normal stress and shear stress between the slices, was applied for calculation of Ks.


Sign in / Sign up

Export Citation Format

Share Document